-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvgg.py
98 lines (70 loc) · 3.33 KB
/
vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import torch
import torch.nn.functional as F
from utils import conv_params, linear_params, bnparams, bnstats, \
flatten_params, flatten_stats
import numpy as np
cfg = {
'11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
def vgg(depth, width, num_classes):
assert depth in [11, 13, 16, 19]
depth_str = str(int(depth))
_cfg = cfg[depth_str]
def gen_feature_params():
in_channels = 3
dic = {}
for i in range(len(_cfg)):
if not _cfg[i] == 'M':
dic['conv{0}'.format(i)] = conv_params(in_channels, _cfg[i], 3)
dic['bn{0}'.format(i)] = bnparams(_cfg[i])
in_channels = _cfg[i]
return dic
def gen_feature_stats():
dic = {}
for i in range(len(_cfg)):
if not _cfg[i] == 'M':
dic['bn{0}'.format(i)] = bnstats(_cfg[i])
return dic
def gen_classifier_params():
return {
'fc1': linear_params(512, 4096),
'fc2': linear_params(4096, 4096),
'fc3': linear_params(4096, num_classes),
}
def feature(input, params, stats, mode):
out = input
for i in range(len(_cfg)):
if _cfg[i] == 'M':
out = F.max_pool2d(out, 2, 2, 0)
else:
out = F.conv2d(out, params['conv{0}'.format(i)], padding=1)
out = activation(out, params, stats, 'bn{0}'.format(i), mode)
return out
def activation(x, params, stats, base, mode):
return F.relu(F.batch_norm(x, weight=params[base + '.weight'],
bias=params[base + '.bias'],
running_mean=stats[base + '.running_mean'],
running_var=stats[base + '.running_var'],
training=mode, momentum=0.1, eps=1e-5), inplace=True)
def classifier(input, params, num_classes, mode):
out = F.relu(F.linear(input, params['fc1.weight'], params['fc1.bias']),
inplace=False)
# out = F.dropout(out, p=0.3, training=mode)
out = F.relu(F.linear(out, params['fc2.weight'], params['fc2.bias']),
inplace=False)
# out = F.dropout(out, p=0.3, training=mode)
out = F.linear(out, params['fc3.weight'], params['fc3.bias'])
return out
params = {**gen_feature_params(), **gen_classifier_params()}
stats = gen_feature_stats()
flat_params = flatten_params(params)
flat_stats = flatten_stats(stats)
def f(input, params, stats, mode):
out = feature(input, params, stats, mode)
out = out.view(-1, np.prod(out.size()[1:])).contiguous()
out = classifier(out, params, num_classes, mode)
return out
return f, flat_params, flat_stats