-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patha28_2_korean.py
335 lines (265 loc) · 9.88 KB
/
a28_2_korean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
#%%
from import_all import *
from selenium import webdriver
from PIL import Image
# import pytesseract
#%%
# Setup WebDriver (make sure chromedriver is in your PATH)
driver = open_driver_loop()
#%%
# mongo_collection_names('stock')
#%%
# ticker='AAPL'
# dt=mongo_get_df('stock','comparison')
# dt
#%%
# tickers=dt['ticker'].values.tolist()
tickers2=kosdaq_mc_list_500(80)
tickers=kospi_mc_list_500(80)
tickers.extend(tickers2)
#%%
currency='$'
currency='KRW'
def run(ticker):
print("ticker: ",ticker)
# exchange=find_exchange_v2(ticker)
exchange="KRX"
driver.get(f'https://www.tradingview.com/chart/q0QCLsTJ/?symbol={exchange}%3A{ticker}') # URL where the canvas is located
time.sleep(10)
button=driver.find_element(By.XPATH,'//button[@class="button-vll9ujXF button-KSzJG6_A"]')
if 'dropped' in button.find_element(By.TAG_NAME,'span').get_attribute('class'):
print('down now')
else:
button.click()
print('up now')
time.sleep(1)
titles=driver.find_elements(By.XPATH,'//span[@class="title-cXDWtdxq itemTitle-KSzJG6_A"]')
infos=driver.find_elements(By.XPATH,'//span[@class="data-cXDWtdxq"]')
dict1={}
dict1['ticker']=ticker
for title,item in zip(titles,infos):
title=title.text
item=item.text
if item.endswith('B'):
item=item.replace('B','')
item=float(item)
item=item*1000000
elif item.endswith('M'):
item=item.replace('M','')
item=float(item)
item=item*1000
elif item.endswith('T'):
item=item.replace('T','')
item=float(item)
item=item*1000000000
elif item.endswith('K'):
item=item.replace('K','')
item=float(item)
elif item.endswith('%'):
item=item.replace('%','')
item=float(item)
else:
try:
item=float(item)
except:
item=float(0)
dict1[title]=item
print("item: ",title,item)
dict1
dd=pd.DataFrame.from_dict(dict1,orient='index').T
dd
# Locate the canvas element
canvas = driver.find_elements(By.TAG_NAME,'canvas')
canvas
canvase=driver.find_elements(By.XPATH,'//canvas[@aria-hidden="true"]')
pt.moveTo(60,200)
time.sleep(1)
canvas=canvase[5]
# Get the location and size of the canvas element
location = canvas.location
size = canvas.size
# Take a screenshot of the entire page
driver.save_screenshot('data/page_image.png')
# Open the screenshot and crop it to the canvas area
# x, y = location['x'], location['y']+500
row=[]
row.append(ticker)
list1=[(56,404),(56,404+365),(56,404+365*2),(56,404+365*3),(56,404+365*4),(56,404+365*5)]
i=0
for i in range(len(list1)):
x,y=list1[i]
# x, y = location['x'], location['y']
# width, height = size['width'], size['height']
width=2692
height=228
image = Image.open('data/page_image.png')
canvas_image = image.crop((x+350, y-130, x + width+1650, y + height+20))
# canvas_image = image.crop((x, y, x + width+1400, y + height+120))
canvas_image.save('data/canvas_image.png')
# canvas_image.show()
size
# Clean up
# def detect_text(path):
"""Detects text in the file."""
path='data/canvas_image.png'
total_text=image2text(path)
total_text=total_text.split('\n')
print("total_text: ",total_text)
try:
numbers=[]
for text in total_text:
# text=item.description
print("text: ",text)
# print(f'\n"{item.description}"')
if text.startswith(currency) and text:
print("text: ",text)
# found_numbers = re.findall(r'\d+\.\d+', text)
found_numbers = re.findall(r'-?\d+\.\d+', text)
print("found_numbers: ",found_numbers)
if found_numbers == '' or found_numbers==None or len(found_numbers)==0:
found_numbers='0'
if text.endswith('B'):
found_numbers=float(found_numbers[0])*1000000
elif text.endswith('M'):
found_numbers=float(found_numbers[0])*1000
numbers.append(found_numbers)
numbers
except:
numbers=[]
define='''reformat each element so that the list looks like "['$10.516B', '$7.796B', '$9.014B', '$17.891B',...]"'''
for _ in range(3):
try:
print('''> try: summary=gpt_answer_v2(str(total_text),define)''',datetime.now())
summary=gpt_answer_v2(str(total_text),define)
summary
list2=ast.literal_eval(summary)
list2
for text in list2:
# found_numbers = re.findall(r'\d+\.\d+', text)
found_numbers = re.findall(r'-?\d+\.\d+', text)
if found_numbers == '' or found_numbers==None or len(found_numbers)==0:
found_numbers='0'
print("found_numbers: ",found_numbers)
if text.endswith('B'):
found_numbers=float(found_numbers[0])*1000000
elif text.endswith('M'):
found_numbers=float(found_numbers[0])*1000
numbers.append(found_numbers)
break
except Exception as e:
time.sleep(1)
print('''>> error: summary=gpt_answer_v2(str(total_text),define): ''',e,datetime.now())
row.append(str(numbers))
row[1:]
slopes1=[]
slopes1.append(ticker)
for numbers in row[1:]:
numbers=ast.literal_eval(numbers)
# numbers=[float(item[0]) for item in numbers if isinstance(item, list) elif isinstance(obj, float) item]
try:
print('''> try: slope1,intercept=regression(numbers)''',datetime.now())
numbers = [float(item[0]) if isinstance(item, list) else float(item) for item in numbers]
slope1,intercept=regression(numbers,normalize=True)
except Exception as e:
slope1=0
print('''>> error: slope1,intercept=regression(numbers): ''',e,datetime.now())
slope1=slope1*1000
slope1=round(slope1,2)
slopes1.append(slope1)
slopes1.append(str(numbers))
for numbers in row[1:]:
numbers=ast.literal_eval(numbers)
try:
numbers = [float(item[0]) if isinstance(item, list) else float(item) for item in numbers]
print('''> try: slope1,intercept=regression(numbers[-8:])''',datetime.now())
slope1,intercept=regression(numbers[-8:],normalize=True)
except Exception as e:
print('''>> error: slope1,intercept=regression(numbers[-8:]): ''',e,datetime.now())
slope1=0
slope1=slope1*1000
slope1=round(slope1,2)
slopes1.append(slope1)
slopes1
print("slopes1: ",slopes1)
numbers=row[1]
numbers=ast.literal_eval(numbers)
numbers
dn=pd.DataFrame(slopes1).T
dn#%
dn.columns=['ticker','revenue1','revenue','gross_profit1','gross_profit','net_income1','net_income','dividend1','dividend','fcf1','fcf','cogs1','cogs','revenue2','gross_profit2','net_income2','dividend2','fcf2,','cogs2']
print("dn: ",dn)
dn=dd.merge(dn,how='outer',on='ticker')
# mongo_insert(dn,'ticker','stock','korean_slope')
mongo_update_insert_one('stock','korean_slope',dn,'ticker')
#%%
ds=mongo_get_df('stock','korean_slope')
ds
#%%
ds[['revenue1','revenue','gross_profit1','gross_profit','net_income1']]
#%%
tickers2=[]
for a,b,c in tickers:
if 'TIGER' in a or '레버리지' in a or '스팩' in a or 'KODEX' in a or 'S&P' in a or 'ACE' in a or 'ESG' in a or 'ETN' in a or '인버스' in a or 'SOL' in a or 'KBSTAR' in a or 'KOSEF' in a or 'QV' in a or 'ARIRANG' in a:
pass
else:
tickers2.append(b)
#%%
# tickers=[b for a,b,c in tickers]
tickers=tickers2
target_column='ticker'
total_list=tickers
undone_items=[]
do_list=ds[target_column].values.tolist()
undone_items=list_minus(total_list,do_list)
print("\n>> len(undone_items)= ", len(undone_items))
print("\n>> len(total_list)= ", len(total_list))
#%%
undone_items
#%%
for ticker in undone_items:
if 1600<int(datetime.strftime(datetime.now(timezone('US/Eastern')) ,"%H%M"))<2000 :
pass
else:
try:
print('''> try: run(ticker)''',datetime.now())
run(ticker)
except Exception as e:
time.sleep(30)
print('''>> error: run(ticker): ''',e,datetime.now())
# for ticker in undone_items:
# if 1600<int(datetime.strftime(datetime.now(timezone('US/Eastern')) ,"%H%M"))<2000 :
# pass
# else:
# run(ticker)
# %%
# mongo_set_df('stock','korean_slope','ticker',dn)
#%%
#%%
print("\n>> len(tickers)= ", len(tickers))
# %%
ds=mongo_get_df('stock','korean_slope')
ds
# %%
ds2=ds[['ticker','revenue1','revenue2','net_income1','net_income2']]
ds2 = ds2[ds2['revenue1'] >= 30]
ds2 = ds2[ds2['revenue2'] >= 30]
ds2 = ds2[ds2['net_income1'] >= 30]
ds2 = ds2[ds2['net_income2'] >= 30]
ds2=ds2.sort_values(by='revenue2',ascending=False)
ds2[:20]
# %%
ticker='AAPL'
endpoint=f'https://api.polygon.io/v3/reference/tickers/{ticker}?apiKey={polygon_api_key}'
response = requests.get(endpoint)
# Raise an error if the request failed
response.raise_for_status()
# Parse the JSON result
data = response.json()
json_data=data['results']
new_row = pd.DataFrame(json_data, index=[0])
new_row['primary_exchange']
# %%
new_row.columns
# %%
find_exchange_v2('AIRI')
# %%