-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
207 lines (158 loc) · 6.72 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import argparse
import os
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from models.tacotron2.tacotron2_ms import Tacotron2MS
from utils import get_config
from utils.data import ArabDataset, text_mel_collate_fn
from utils.logging import TBLogger
from utils.training import *
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str,
default="configs/nawar.yaml", help="Path to yaml config file")
@torch.inference_mode()
def validate(model, test_loader, writer, device, n_iter):
loss_sum = 0
n_test_sum = 0
model.eval()
for batch in test_loader:
text_padded, input_lengths, mel_padded, gate_padded, \
output_lengths = batch_to_device(batch, device)
y_pred = model(text_padded, input_lengths,
mel_padded, output_lengths,
torch.zeros_like(output_lengths))
mel_out, mel_out_postnet, gate_pred, alignments = y_pred
mel_loss = F.mse_loss(mel_out, mel_padded) + \
F.mse_loss(mel_out_postnet, mel_padded)
gate_loss = F.binary_cross_entropy_with_logits(gate_pred, gate_padded)
loss = mel_loss + gate_loss
loss_sum += mel_padded.size(0)*loss.item()
n_test_sum += mel_padded.size(0)
val_loss = loss_sum / n_test_sum
idx = random.randint(0, mel_padded.size(0) - 1)
mel_infer, *_ = model.infer(
text_padded[idx:idx+1], input_lengths[idx:idx+1]*0, input_lengths[idx:idx+1])
writer.add_sample(
alignments[idx, :, :input_lengths[idx].item()],
mel_out[idx], mel_padded[idx], mel_infer[0],
output_lengths[idx], n_iter)
writer.add_scalar('loss/val_loss', val_loss, n_iter)
model.train()
return val_loss
def training_loop(model,
optimizer,
train_loader,
test_loader,
writer,
device,
config,
n_epoch,
n_iter):
model.train()
for epoch in range(n_epoch, config.epochs):
print(f"Epoch: {epoch}")
for batch in train_loader:
text_padded, input_lengths, mel_padded, gate_padded, \
output_lengths = batch_to_device(batch, device)
y_pred = model(text_padded, input_lengths,
mel_padded, output_lengths,
torch.zeros_like(output_lengths))
mel_out, mel_out_postnet, gate_out, _ = y_pred
optimizer.zero_grad()
# LOSS
mel_loss = F.mse_loss(mel_out, mel_padded) + \
F.mse_loss(mel_out_postnet, mel_padded)
gate_loss = F.binary_cross_entropy_with_logits(
gate_out, gate_padded)
loss = mel_loss + gate_loss
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), config.grad_clip_thresh)
optimizer.step()
# LOGGING
print(f"loss: {loss.item()}, grad_norm: {grad_norm.item()}")
writer.add_training_data(loss.item(), grad_norm.item(),
config.learning_rate, n_iter)
if n_iter % config.n_save_states_iter == 0:
save_states(f'states.pth', model, optimizer,
n_iter, epoch, config)
if n_iter % config.n_save_backup_iter == 0 and n_iter > 0:
save_states(f'states_{n_iter}.pth', model,
optimizer, n_iter, epoch, config)
n_iter += 1
# VALIDATE
val_loss = validate(model, test_loader, writer, device, n_iter)
print(f"Validation loss: {val_loss}")
save_states(f'states_{n_iter}.pth', model,
optimizer, n_iter, epoch, config)
def main():
args = parser.parse_args()
config = get_config(args.config)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# set random seed
if config.random_seed != False:
torch.manual_seed(config.random_seed)
torch.cuda.manual_seed_all(config.random_seed)
import numpy as np
np.random.seed(config.random_seed)
# make checkpoint folder if nonexistent
if not os.path.isdir(config.checkpoint_dir):
os.makedirs(os.path.abspath(config.checkpoint_dir))
print(f"Created checkpoint_dir folder: {config.checkpoint_dir}")
# datasets
if config.cache_dataset:
print('Caching datasets ...')
train_dataset = ArabDataset(config.train_labels, config.train_wavs_path,
cache=config.cache_dataset)
test_dataset = ArabDataset(config.test_labels, config.test_wavs_path,
cache=config.cache_dataset)
# optional: balanced sampling
sampler, shuffle, drop_last = None, True, True
if config.balanced_sampling:
weights = torch.load(config.sampler_weights_file)
sampler = torch.utils.data.WeightedRandomSampler(
weights, len(weights), replacement=False)
shuffle, drop_last = False, False
# dataloaders
train_loader = DataLoader(train_dataset,
batch_size=config.batch_size,
collate_fn=text_mel_collate_fn,
shuffle=shuffle, drop_last=drop_last,
sampler=sampler)
test_loader = DataLoader(test_dataset,
batch_size=config.batch_size, drop_last=False,
shuffle=False, collate_fn=text_mel_collate_fn)
# construct model
model = Tacotron2MS(n_symbol=40)
model = model.to(device)
model.decoder.decoder_max_step = config.decoder_max_step
# optimizer
optimizer = torch.optim.AdamW(model.parameters(),
lr=config.learning_rate,
weight_decay=config.weight_decay)
# resume from existing checkpoint
n_epoch, n_iter = 0, 0
if config.restore_model != '':
state_dicts = torch.load(config.restore_model)
model.load_state_dict(state_dicts['model'])
if 'optim' in state_dicts:
optimizer.load_state_dict(state_dicts['optim'])
if 'epoch' in state_dicts:
n_epoch = state_dicts['epoch']
if 'iter' in state_dicts:
n_iter = state_dicts['iter']
# tensorboard writer
writer = TBLogger(config.log_dir)
# start training
training_loop(model,
optimizer,
train_loader,
test_loader,
writer,
device,
config,
n_epoch,
n_iter)
if __name__ == '__main__':
main()