forked from ajex1988/BDL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBDL.py
125 lines (95 loc) · 4.36 KB
/
BDL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from options.train_options import TrainOptions
import os
import numpy as np
from data import CreateSrcDataLoader
from data import CreateTrgDataLoader
from model import CreateModel
from model import CreateDiscriminator
from utils.timer import Timer
import tensorboardX
def main():
opt = TrainOptions()
args = opt.initialize()
_t = {'iter time' : Timer()}
model_name = args.source + '_to_' + args.target
if not os.path.exists(args.snapshot_dir):
os.makedirs(args.snapshot_dir)
os.makedirs(os.path.join(args.snapshot_dir, 'logs'))
opt.print_options(args)
sourceloader, targetloader = CreateSrcDataLoader(args), CreateTrgDataLoader(args)
targetloader_iter, sourceloader_iter = iter(targetloader), iter(sourceloader)
model, optimizer = CreateModel(args)
model_D, optimizer_D = CreateDiscriminator(args)
start_iter = 0
if args.restore_from is not None:
start_iter = int(args.restore_from.rsplit('/', 1)[1].rsplit('_')[1])
train_writer = tensorboardX.SummaryWriter(os.path.join(args.snapshot_dir, "logs", model_name))
bce_loss = torch.nn.BCEWithLogitsLoss()
cudnn.enabled = True
cudnn.benchmark = True
model.train()
model.cuda()
model_D.train()
model_D.cuda()
loss = ['loss_seg_src', 'loss_seg_trg', 'loss_D_trg_fake', 'loss_D_src_real', 'loss_D_trg_real']
_t['iter time'].tic()
for i in range(start_iter, args.num_steps):
model.adjust_learning_rate(args, optimizer, i)
model_D.adjust_learning_rate(args, optimizer_D, i)
optimizer.zero_grad()
optimizer_D.zero_grad()
for param in model_D.parameters():
param.requires_grad = False
src_img, src_lbl, _, _ = sourceloader_iter.next()
src_img, src_lbl = Variable(src_img).cuda(), Variable(src_lbl.long()).cuda()
src_seg_score = model(src_img, lbl=src_lbl)
loss_seg_src = model.loss
loss_seg_src.backward()
if args.data_label_folder_target is not None:
trg_img, trg_lbl, _, _ = targetloader_iter.next()
trg_img, trg_lbl = Variable(trg_img).cuda(), Variable(trg_lbl.long()).cuda()
trg_seg_score = model(trg_img, lbl=trg_lbl)
loss_seg_trg = model.loss
else:
trg_img, _, name = targetloader_iter.next()
trg_img = Variable(trg_img).cuda()
trg_seg_score = model(trg_img)
loss_seg_trg = 0
outD_trg = model_D(F.softmax(trg_seg_score), 0)
loss_D_trg_fake = model_D.loss
loss_trg = args.lambda_adv_target * loss_D_trg_fake + loss_seg_trg
loss_trg.backward()
for param in model_D.parameters():
param.requires_grad = True
src_seg_score, trg_seg_score = src_seg_score.detach(), trg_seg_score.detach()
outD_src = model_D(F.softmax(src_seg_score), 0)
loss_D_src_real = model_D.loss / 2
loss_D_src_real.backward()
outD_trg = model_D(F.softmax(trg_seg_score), 1)
loss_D_trg_real = model_D.loss / 2
loss_D_trg_real.backward()
optimizer.step()
optimizer_D.step()
for m in loss:
train_writer.add_scalar(m, eval(m), i+1)
if (i+1) % args.save_pred_every == 0:
print('taking snapshot ...')
torch.save(model.state_dict(), os.path.join(args.snapshot_dir, '%s_' %(args.source) +str(i+1)+'.pth' ))
if (i+1) % args.print_freq == 0:
_t['iter time'].toc(average=False)
print('[it %d][src seg loss %.4f][lr %.4f][%.2fs]' % \
(i + 1, loss_seg_src.data, optimizer.param_groups[0]['lr']*10000, _t['iter time'].diff))
if i + 1 > args.num_steps_stop:
print('finish training')
break
_t['iter time'].tic()
if __name__ == '__main__':
os.system('nvidia-smi -q -d Memory |grep -A4 GPU|grep Free >tmp')
memory_gpu=[int(x.split()[2]) for x in open('tmp','r').readlines()]
os.system('rm tmp')
os.environ["CUDA_VISIBLE_DEVICES"] = str(np.argmax(memory_gpu))
main()