forked from pastor-kamil/COVID_zgony
-
Notifications
You must be signed in to change notification settings - Fork 0
/
functions.R
241 lines (191 loc) · 10.4 KB
/
functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
przyg_danych <- function(wybrany_kraj,dane) {
data_robocze <- dane %>%
filter(sex== "T", geo == wybrany_kraj) %>%
mutate(rok = factor(rok))
return(data_robocze)
}
ostatnia_data <- function(wybrany_kraj,dane) {
robocze <- dane %>%
filter(!is.na(obsValue)) %>%
filter(sex== "T", geo == wybrany_kraj) %>%
filter(data == max(data)) %>% select(data, tydzien_liczba)
ostatnia_data <- format(robocze$data, "%d %B %Y")
ostatni_tydzien <- robocze$tydzien_liczba
lista <- list(ostatni_tydzien, ostatnia_data)
return(lista)
}
przyg_wyk_tygodniowego <- function(data_robocze, wybrany_kraj) {
ggplot(data_robocze) +
geom_line(aes(x = tydzien_liczba, y = obsValue, group = rok), color = "grey", data = data_robocze %>% filter(rok != "2020")) +
geom_line(aes(x = tydzien_liczba, y = obsValue, group = rok), data = data_robocze %>% filter(rok == "2020"), size = 1.1, color = "darkblue") +
scale_y_continuous(labels = scales::number) +
labs(x = "Tygodnie roku", y = "Tygodniowa liczba zgonów",
title = paste0(wybrany_kraj," - Tygodniowa liczba zgonów dla roku 2020 na tle poprzednich"),
caption = "Autor: Kamil Pastor na podstawie Eurostatu") +
theme_classic()
}
przyg_wyk_dekompozycja <- function(data_robocze, wybrany_kraj) {
data_robocze2 <- data_robocze[complete.cases(data_robocze),] %>%
arrange(data)
rok_pocz <- min(year(data_robocze2$data))
tydzien_pocz <- min(week(data_robocze2$data))
data_robocze_ts <- ts(data_robocze2$obsValue, freq=52, start=rok_pocz + tydzien_pocz /12)
dane_odsezonowane <- stl(data_robocze_ts, s.window="periodic")
wykres <- dane_odsezonowane %>%
forecast::autoplot(range.bars = FALSE,
labels = c("trend", "sezonowość", "reszty")) +
scale_y_continuous(labels = scales::number) +
labs(x = "", y = "",
title = paste0(wybrany_kraj," - Dekompozycja liczby zgonów na trend, sezonowość i reszty"),
subtitle = "Dekompozycja metodą STL.",
caption = "Autor: Kamil Pastor na podstawie Eurostatu.") +
theme_classic()
return(wykres)
}
przyg_wyk_nadmiarowych_zgonow <- function(data_robocze, wybrany_kraj) {
data_robocze2 <- data_robocze[complete.cases(data_robocze),] %>%
arrange(data)
rok_pocz <- min(year(data_robocze2$data))
tydzien_pocz <- min(week(data_robocze2$data))
data_robocze_ts <- ts(data_robocze2$obsValue, freq=52, start=rok_pocz + tydzien_pocz/12)
dane_odsezonowane <- stl(data_robocze_ts, s.window="periodic")
dane_wykres <- as.data.frame(dane_odsezonowane$time.series)
dane_wykres <- cbind(dane_wykres, data_robocze2$data) %>%
mutate(szacunek = seasonal + trend,
dol = seasonal + trend - 2 * sd(remainder),
gora = seasonal + trend + 2 *sd(remainder),
original = seasonal + trend + remainder) %>%
rename(data = `data_robocze2$data`) %>%
filter(data > "2016-01-01")
dane_max <- dane_wykres %>%
filter(data == max(data)) %>%
mutate(data = data + months(3))
ggplot(dane_wykres, aes(x=data)) +
geom_line(aes(y = szacunek), color = "darkgrey") +
geom_line(aes(y = original), color = "darkblue", size = 1.2) +
geom_ribbon(aes(ymin = dol, ymax = gora), fill = "grey", alpha = 0.5) +
scale_y_continuous(labels = scales::number) +
labs(x = "", y= "Zgony tygodniowo",
title = paste0(wybrany_kraj," - Nadzwyczajna śmiertelność - od 2016 roku"),
subtitle = "Szary obszar oznacza przedział trend + sezonowość ± dwa odchylenia standardowe reszt.",
caption = "Autor: Kamil Pastor na podstawie Eurostatu") +
theme_classic() +
scale_x_date(date_labels = "%b %y", date_breaks = "6 months") +
theme(panel.grid.major.x = element_line()) +
geom_shadowtext(data = dane_max, aes(y = original, label = round(original,0)),
vjust= 0, color = "darkblue", bg.colour="white" ) +
geom_shadowtext(data = dane_max, aes(y = szacunek, label = round(szacunek,0)),
vjust= 0, color = "dimgrey", bg.colour= "white" )
}
przyg_wyk_tygodniowego_kraje <- function(dt1) {
dane_pomocnicze <- dt1 %>%
filter(sex == "T" & geo != "Cypr" & geo != "Andora" &
geo != "Andora" & geo != "Albania" & geo != "Armenia" &
geo != "Gruzja" & geo != "Lichtenstein" & geo != "Luksemburg" &
geo != "Czarnogóra" & geo != "Serbia" &
geo != "Litwa" & geo != "Łotwa" & geo != "Estonia" &
data >= "2015-01-01" & data < "2020-01-01") %>%
mutate(rok = factor(rok)) %>%
group_by(geo, tydzien_liczba) %>%
mutate(srednia_15_19 = mean(obsValue, na.rm = TRUE)) %>%
ungroup()
dane_pomocnicze2 <- dt1 %>%
filter(sex == "T" & geo != "Cypr" & geo != "Andora" &
geo != "Andora" & geo != "Albania" & geo != "Armenia" &
geo != "Gruzja" & geo != "Lichtenstein" & geo != "Luksemburg" &
geo != "Czarnogóra" & geo != "Serbia" &
geo != "Litwa" & geo != "Łotwa" & geo != "Estonia" &
data >= "2020-01-01") %>%
mutate(rok = factor(rok)) %>%
mutate(srednia_15_19 = NA)
dane_wykres <- rbind(dane_pomocnicze, dane_pomocnicze2) %>%
group_by(geo, tydzien_liczba) %>%
mutate(p_indeks = round(obsValue / mean(srednia_15_19,na.rm = TRUE) * 100 - 100, 1)) %>%
filter(data >= "2020-01-01") %>%
ungroup()
dane_max <- dane_wykres %>%
filter(rok == 2020 ) %>%
filter(tydzien_liczba == max(tydzien_liczba)) %>%
mutate(tydzien_liczba = tydzien_liczba + 5)
dane_szare <- dane_wykres %>%
mutate(geo2 = geo) %>%
select(!geo)
ggplot(dane_wykres, aes(x = tydzien_liczba, y = p_indeks, group = geo)) +
geom_line(aes(x = tydzien_liczba, y = p_indeks, group = geo2), color = "grey",
data = dane_szare) +
geom_line(aes(x = tydzien_liczba, y = p_indeks, group = geo),
data = dane_wykres, size = 1, color = "darkblue") +
facet_wrap(~geo, ncol = 5) +
scale_y_continuous(labels = scales::number, limits = c(-50, 170)) +
labs(x = "Tygodnie roku", y = "Nadwyżkowa umieralność w procentach",
title = paste0("Procentowa nadwyżkowa umieralność w ujęciu tygodniowym"),
subtitle = "Dane przedstawiają o ile procent więcej osób umarło w danym kraju w danym tygodniu \nwzględem średniej umieralności w danym tygodniu w ostatnich pięciu latach (2015-2019).\nDane dla krajów różnią się opóźnieniem w raportowaniu danych.",
caption = "Autor: Kamil Pastor na podstawie danych Eurostatu") +
theme_minimal() +
theme(axis.text = element_text(size = 7),
axis.title = element_text(size = 8),
strip.text = element_text(face = "bold", size = 8),
plot.title = element_text(),
plot.subtitle = element_text(size = 8)) +
geom_hline(yintercept = 0, color = "maroon")
}
przyg_wyk_tygodniowego_nadwyzkowa_smiertelnosc_kraj <- function(dt1, wybrany_kraj) {
dane_pomocnicze <- dt1 %>%
filter(sex == "T" & geo == wybrany_kraj &
data >= "2015-01-01" & data < "2020-01-01") %>%
mutate(rok = factor(rok)) %>%
group_by(geo, tydzien_liczba) %>%
mutate(srednia_15_19 = mean(obsValue, na.rm = TRUE)) %>%
ungroup()
dane_pomocnicze2 <- dt1 %>%
filter(sex == "T" & geo == wybrany_kraj &
data >= "2020-01-01") %>%
mutate(rok = factor(rok)) %>%
mutate(srednia_15_19 = NA) %>%
filter(!is.na(obsValue))
dane_wykres <- rbind(dane_pomocnicze, dane_pomocnicze2) %>%
group_by(geo, tydzien_liczba) %>%
mutate(p_indeks = round(obsValue / mean(srednia_15_19,na.rm = TRUE) * 100 - 100, 1)) %>%
filter(data >= "2020-01-01") %>%
ungroup()
dane_max <- dane_wykres %>%
filter(rok == 2020 ) %>%
filter(tydzien_liczba == max(tydzien_liczba)) %>%
mutate(tydzien_liczba = tydzien_liczba + 4)
ggplot(dane_wykres, aes(x = tydzien_liczba, y = p_indeks)) +
geom_line(aes(x = tydzien_liczba, y = p_indeks, group = geo),
data = dane_wykres, size = 1.1, color = "darkblue") +
scale_y_continuous(labels = scales::number, limits = c(-50, 170)) +
labs(x = "Tygodnie roku", y = "Nadwyżkowa umieralność w procentach",
title = paste0(wybrany_kraj," - Procentowa nadwyżkowa umieralność w ujęciu tygodniowym"),
subtitle = "Dane przedstawiają o ile procent więcej osób umarło w danym tygodniu względem średniej \numieralności w danym tygodniu w ostatnich pięciu latach (2015-2019).",
caption = "Autor: Kamil Pastor na podstawie danych Eurostatu") +
theme_minimal() +
theme(axis.text = element_text(),
strip.text = element_text(face = "bold"),
plot.title = element_text()) +
geom_hline(yintercept = 0, color = "maroon") +
geom_shadowtext(data = dane_max, aes(x = tydzien_liczba, y = p_indeks, label = paste0(round(p_indeks,1)," %")),
vjust= 0, size = 4, color = "darkblue", bg.colour="white" )
}
heatmapa_dostepnosc <- function(dt1) {
dane_wykres <- dt1 %>%
filter(sex == "T" & data >= "2020-01-01" & geo != "Andora") %>%
mutate(dostepnosc = if_else(is.na(obsValue),0,1))
ggplot(dane_wykres, aes(x = tydzien_liczba, y = geo, fill = dostepnosc)) +
geom_tile() +
scale_y_discrete(limits = rev) +
scale_fill_gradientn(colours=c("lightgrey", "darkblue"),
values=rescale(c(0,1)),
guide="colorbar") +
labs(x = "Tygodnie roku", y = "",
title = paste0("Dostępność danych o zgonach w 2020 roku wg tygodni"),
subtitle = "Ciemnoniebieskim kolorem zaznaczo te tygodnie, dla których są dostępne dane o zgonach",
caption = "Autor: Kamil Pastor na podstawie danych Eurostatu") +
theme_minimal() +
theme(axis.text = element_text(),
strip.text = element_text(face = "bold"),
plot.title = element_text(),
plot.subtitle = element_text(size = 8),
legend.position = "none")
}