-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcnn1.py
64 lines (52 loc) · 1.83 KB
/
cnn1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Simple CNN based on the following example:
# https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py
import keras
from keras.models import Sequential, load_model
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
import numpy as np
from pandas import read_pickle
from sklearn.metrics import confusion_matrix
batch_size = 128
X_train, y_train = read_pickle("data/train.pickle")
X_test, y_test = read_pickle("data/test.pickle")
(num_train, rows, columns) = X_train.shape
num_test = X_test.shape[0]
X_train = X_train.reshape(num_train, rows, columns, 1)
X_test = X_test.reshape(num_test, rows, columns, 1)
def train_model(X_train, y_train, path):
model = Sequential()
model.add(Conv2D(32,
kernel_size=(3, 3),
activation='relu',
input_shape=(rows, columns, 1)))
model.add(Conv2D(64,
(3, 3),
activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128,
activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1,
activation='sigmoid'))
model.compile(loss=keras.losses.binary_crossentropy,
optimizer='adam',
metrics=['accuracy'])
model.fit(X_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_split=0.1)
model.save(path)
return model
epochs = 10
filename = "cnn1_10.h5"
train_model(X_train, y_train, "models/" + filename)
epochs = 50
filename = "cnn1_50.h5"
train_model(X_train, y_train, "models/" + filename)
epochs = 100
filename = "cnn1_100.h5"
train_model(X_train, y_train, "models/" + filename)