diff --git a/collection.json b/collection.json index 5d7db216d..02cbfd293 100644 --- a/collection.json +++ b/collection.json @@ -23,7 +23,7 @@ ], "created": "2022-06-15 22:06:22.658325", "description": "Nucleus segmentation for fluorescence microscopy", - "download_count": 68528, + "download_count": 68611, "id": "10.5281/zenodo.5764892", "license": "CC-BY-4.0", "links": [ @@ -72,7 +72,7 @@ ], "created": "2022-03-08 18:36:28.378522", "description": "StarDist - Object Detection with Star-convex Shapes", - "download_count": 53947, + "download_count": 53955, "id": "10.5281/zenodo.6338614", "license": "BSD-3-Clause", "links": [ @@ -119,7 +119,7 @@ ], "created": "2022-06-15 22:09:35.368273", "description": "Cell segmentation for phase-contrast microscopy.", - "download_count": 45474, + "download_count": 45488, "id": "10.5281/zenodo.5869899", "license": "CC-BY-4.0", "links": [ @@ -164,7 +164,7 @@ ], "created": "2022-01-18 22:01:09.315638", "description": "Neuron segmentation in EM, trained on the CREMI challenge data.", - "download_count": 44840, + "download_count": 44848, "id": "10.5281/zenodo.5874741", "license": "CC-BY-4.0", "links": [ @@ -215,7 +215,7 @@ ], "created": "2023-07-26 10:47:44.642355", "description": "DeepImageJ compatible U-Net trained to segment phase contrast microscopy images of pancreatic stem cells on a 2D polystyrene substrate.", - "download_count": 42680, + "download_count": 42690, "id": "10.5281/zenodo.5914248", "license": "BSD-2-Clause", "links": [ @@ -266,7 +266,7 @@ ], "created": "2022-07-08 17:02:28.049385", "description": "Prediction enhancer for segmenting mitochondria in EM images.", - "download_count": 41317, + "download_count": 41327, "id": "10.5281/zenodo.6406756", "license": "CC-BY-4.0", "links": [ @@ -311,7 +311,7 @@ ], "created": "2022-06-10 06:22:28.465944", "description": "Mitochondria segmentation for electron microscopy.", - "download_count": 40426, + "download_count": 40429, "id": "10.5281/zenodo.5874841", "license": "CC-BY-4.0", "links": [ @@ -357,7 +357,7 @@ ], "created": "2022-01-21 14:50:48.356997", "description": "A 3D U-net to predict cell membranes in plant tissues, trained on volumes of Arabidopsis thaliana ovules acquired on a confocal microscope.", - "download_count": 40168, + "download_count": 40175, "id": "10.5281/zenodo.5749843", "license": "MIT", "links": [ @@ -404,7 +404,7 @@ ], "created": "2022-02-09 21:14:46.430029", "description": "{organelle} segmentation in EM of platynereis.", - "download_count": 39730, + "download_count": 39731, "id": "10.5281/zenodo.6028097", "license": "CC-BY-4.0", "links": [ @@ -453,7 +453,7 @@ ], "created": "2022-03-11 22:32:05.554959", "description": "StarDist - Object Detection with Star-convex Shapes", - "download_count": 39328, + "download_count": 39340, "id": "10.5281/zenodo.6348084", "license": "BSD-3-Clause", "links": [ @@ -504,7 +504,7 @@ ], "created": "2023-03-29 18:14:39.826271", "description": "This trained 2D U-Net model segments the contour, foreground and background of Bacillus Subtilis bacteria imaged with Widefield microscopy images. To obtain a unique label for each individual bacteria detected in the image one could run further watershed segmentation using the label 1 as the seed.", - "download_count": 38416, + "download_count": 38421, "id": "10.5281/zenodo.7261974", "license": "MIT", "links": [ @@ -561,7 +561,7 @@ ], "created": "2022-06-15 22:12:29.012734", "description": "Cell segmentation in EM of platynereis.", - "download_count": 37717, + "download_count": 37719, "id": "10.5281/zenodo.6028280", "license": "CC-BY-4.0", "links": [ @@ -604,7 +604,7 @@ ], "created": "2023-03-06 19:01:04.321374", "description": "Cell segmentation model for segmenting images from the Human Protein Atlas", - "download_count": 36951, + "download_count": 36956, "id": "10.5281/zenodo.6200635", "license": "CC-BY-4.0", "links": [ @@ -645,7 +645,7 @@ ], "created": "2022-03-12 09:56:33.055323", "description": "Perform leaf segmentation in light microscopy images of Arabidopsis", - "download_count": 36488, + "download_count": 36489, "id": "10.5281/zenodo.6348728", "license": "MIT", "links": [ @@ -690,7 +690,7 @@ ], "created": "2023-03-24 17:08:34.402776", "description": "3D Unet trained on confocal images of Arabidopsis thaliana apical stem cell: https://www.repository.cam.ac.uk/handle/1810/262530. Voxel size: [0.25, 0.25, 0.25]", - "download_count": 36451, + "download_count": 36455, "id": "10.5281/zenodo.6346511", "license": "MIT", "links": [ @@ -745,7 +745,7 @@ ], "created": "2022-01-27 14:00:17.489637", "description": "2D UNet trained using ZeroCostDL4Mic notebooks on data from ISBI Challenge for neuron segmentation in Transmission Electron Microscopy images.", - "download_count": 35778, + "download_count": 35781, "id": "10.5281/zenodo.5817052", "license": "MIT", "links": [ @@ -790,7 +790,7 @@ ], "created": "2022-06-15 22:08:13.874556", "description": "Cell segmentation for immunofluorescence microscopy.", - "download_count": 35291, + "download_count": 35330, "id": "10.5281/zenodo.5847355", "license": "CC-BY-4.0", "links": [ @@ -835,7 +835,7 @@ ], "created": "2022-04-01 16:06:28.519947", "description": "Segmentation of mitochondria in EM images.", - "download_count": 34684, + "download_count": 34688, "id": "10.5281/zenodo.6406803", "license": "CC-BY-4.0", "links": [ @@ -880,7 +880,7 @@ ], "created": "2023-03-02 05:53:45.695883", "description": "Nuclei segmentation model for segmenting images from the Human Protein Atlas", - "download_count": 33211, + "download_count": 33218, "id": "10.5281/zenodo.6200999", "license": "CC-BY-4.0", "links": [ @@ -923,7 +923,7 @@ ], "created": "2023-03-27 12:11:52.357154", "description": "A 3D U-Net trained to predict the cell boundaries in live light sheet images of developing mouse embryo. Voxel size: 0.2\u00d70.2\u00d71.0 \u00b5m^3", - "download_count": 31663, + "download_count": 31667, "id": "10.5281/zenodo.6384845", "license": "MIT", "links": [ @@ -976,7 +976,7 @@ ], "created": "2023-03-27 12:14:49.467153", "description": "A 3D U-Net trained to predict the nuclei and their boundaries in fixed confocal images of developing mouse embryo.Voxel size: (0.2\u00d70.2\u00d71 \u00b5m^3) (XYZ).", - "download_count": 30741, + "download_count": 30745, "id": "10.5281/zenodo.6383429", "license": "MIT", "links": [ @@ -1024,7 +1024,7 @@ ], "created": "2023-03-03 13:09:05.981223", "description": "affinity-model", - "download_count": 29401, + "download_count": 29407, "id": "10.5281/zenodo.6079314", "license": "CC-BY-4.0", "links": [ @@ -1072,7 +1072,7 @@ ], "created": "2023-04-06 10:47:26.453147", "description": "2D Unet trained on confocal images of Arabidopsis Ovules", - "download_count": 28019, + "download_count": 28027, "id": "10.5281/zenodo.6334383", "license": "MIT", "links": [ @@ -1121,7 +1121,7 @@ ], "created": "2023-03-23 21:42:30.250688", "description": "A 3D U-Net trained to predict the cell boundaries in lightsheet stacks of Arabidopsis Lateral Root Primordia. (0.25x0.1625x0.1625) microns ZYX", - "download_count": 25765, + "download_count": 25770, "id": "10.5281/zenodo.6334777", "license": "MIT", "links": [ @@ -1177,7 +1177,7 @@ ], "created": "2023-04-06 10:26:25.873589", "description": "2D Unet trained on z-slices of confocal images of Arabidopsis thaliana apical stem cells", - "download_count": 25668, + "download_count": 25676, "id": "10.5281/zenodo.6334881", "license": "MIT", "links": [ @@ -1221,7 +1221,7 @@ ], "created": "2022-05-11 12:52:23.766143", "description": "The winning model of HPA image classification 2021 by Bestfitting", - "download_count": 25421, + "download_count": 25424, "id": "10.5281/zenodo.5910854", "license": "MIT", "links": [ @@ -1267,7 +1267,7 @@ ], "created": "2023-04-06 12:43:33.436336", "description": "A 3d U-Net trained to predict the cell boundaries in confocal stacks of Arabidopsis ovules. Voxel size: (0.235, 0.150, 0.150) microns ZYX", - "download_count": 24109, + "download_count": 24118, "id": "10.5281/zenodo.6334583", "license": "MIT", "links": [ @@ -1318,7 +1318,7 @@ ], "created": "2022-07-08 14:35:48.861260", "description": "Prediction enhancer for segmenting mitochondria in EM images.", - "download_count": 23598, + "download_count": 23600, "id": "10.5281/zenodo.6811491", "license": "CC-BY-4.0", "links": [ @@ -1382,7 +1382,7 @@ ], "created": "2022-05-18 09:42:30.953891", "description": "DeepImageJ compatible fully residual U-Net trained to segment small extracellular vesicles in 2D TEM images", - "download_count": 23039, + "download_count": 23040, "download_url": "https://zenodo.org/api/records/6559475/files/deepimagej_fru-net_sev_segmentation.zip/content", "id": "10.5281/zenodo.6559474", "license": "BSD-3-Clause", @@ -1429,7 +1429,7 @@ ], "created": "2022-02-01 22:38:38.088910", "description": "The winning model of HPA image classification 2019 by Bestfitting", - "download_count": 21204, + "download_count": 21206, "id": "10.5281/zenodo.5910163", "license": "MIT", "links": [ @@ -1468,7 +1468,7 @@ ], "created": "2022-07-28 07:37:36.393648", "description": "DeepImageJ compatible FRUNet trained to subtly segment cells and gland.", - "download_count": 20694, + "download_count": 20704, "id": "10.5281/zenodo.6865412", "license": "CC-BY-4.0", "name": "Cells and gland Segmentation (FRUNet)", @@ -1503,7 +1503,7 @@ ], "created": "2023-07-07 10:12:51.478763", "description": "Cellular membrane prediction model for volume SEM datasets", - "download_count": 19070, + "download_count": 19082, "id": "10.5281/zenodo.7274275", "license": "CC-BY-4.0", "links": [ @@ -1549,7 +1549,7 @@ ], "created": "2022-07-07 21:30:58.116303", "description": "Prediction enhancer for segmenting cell boundaries in EM images.", - "download_count": 18687, + "download_count": 18689, "id": "10.5281/zenodo.6808325", "license": "CC-BY-4.0", "links": [ @@ -1611,7 +1611,7 @@ ], "created": "2022-11-12 12:53:32.701172", "description": "EmbryoNet Model by embryoNet Team", - "download_count": 13956, + "download_count": 13960, "id": "10.5281/zenodo.7315440", "license": "GPL-3.0", "links": [ @@ -1651,7 +1651,7 @@ ], "created": "2023-02-15 09:34:43.433531", "description": "HyLFM-Net trained on static images of arrested medaka hatchling hearts. The network reconstructs a volumentric image from a given light-field.", - "download_count": 12671, + "download_count": 12673, "id": "10.5281/zenodo.7614645", "license": "MIT", "links": [ @@ -1700,7 +1700,7 @@ ], "created": "2022-12-06 13:55:39.060882", "description": "For segmenting 2D projections of drosophila epithelia", - "download_count": 12665, + "download_count": 12668, "id": "10.5281/zenodo.7380171", "license": "CC-BY-4.0", "name": "Drosophila epithelia cell boundary segmentation of 2D projections", @@ -1740,7 +1740,7 @@ ], "created": "2023-03-29 11:10:26.329999", "description": "Unet trained on confocal images of Arabidopsis Ovules nuclei", - "download_count": 12425, + "download_count": 12430, "id": "10.5281/zenodo.7772662", "license": "MIT", "links": [ @@ -1790,7 +1790,7 @@ ], "created": "2023-03-30 16:57:43.433376", "description": "Wasserstein GAN (WGAN) trained for super-resolution of confocal scanning microscopy images of mitochondria in U2OS cells. Mitochondria were labelled with MitoTracker and the model was trained to upsample the images by a factor of 4.", - "download_count": 10078, + "download_count": 10080, "id": "10.5281/zenodo.7786492", "license": "MIT", "links": [ @@ -1837,7 +1837,7 @@ ], "created": "2023-10-11 17:13:48.737609", "description": "This widely applicable model is trained for 3D nuclei instance segmentation and with 3D nuclei images of Arabidopsis ovules with TO-PRO-3 stain. TO-PRO-3 nuclei stain detects double-stranded nucleic acids and hence can be a useful tool for nuclear DNA quantification and 3D volumetric nuclei extraction. This model is trained with dataset 1136, 1137, 1139, 1170 and validated with 1135.", - "download_count": 8377, + "download_count": 8397, "id": "10.5281/zenodo.8421755", "license": "CC-BY-4.0", "links": [ @@ -1884,7 +1884,7 @@ ], "created": "2023-06-23 10:23:37.255827", "description": "Label-free prediction of fluorescence images from brightield images", - "download_count": 6731, + "download_count": 6733, "id": "10.5281/zenodo.8064806", "license": "Apache-2.0", "links": [ @@ -1942,7 +1942,7 @@ ], "created": "2022-05-18 10:12:14.635800", "description": "DeepImageJ compatible fully residual U-Net trained to segment small extracellular vesicles in 2D TEM images", - "download_count": 6631, + "download_count": 6633, "download_url": "https://cbia.fi.muni.cz/files/segmentation/fru-net/FRU_processing.zip", "id": "10.5281/zenodo.6559929", "license": "MIT", @@ -1994,7 +1994,7 @@ ], "created": "2023-10-09 06:57:28.189519", "description": "Pre-training a Foundation Model for Universal Fluorescence Microscopy Image Restoration", - "download_count": 5746, + "download_count": 5750, "id": "10.5281/zenodo.8419845", "license": "CC-BY-4.0", "name": "UniFMIRSuperResolutionOnMicrotubules", @@ -2040,7 +2040,7 @@ ], "created": "2023-10-09 07:05:52.763368", "description": "Pre-training a Foundation Model for Universal Fluorescence Microscopy Image Restoration", - "download_count": 4479, + "download_count": 4480, "id": "10.5281/zenodo.8420099", "license": "CC-BY-4.0", "links": [ @@ -2081,7 +2081,7 @@ ], "created": "2023-10-11 00:39:40.958129", "description": "This widely applicable model is trained for 3D nuclei instance segmentation and with 3D nuclei images of Arabidopsis ovules with TO-PRO-3 stain. TO-PRO-3 nuclei stain detects double-stranded nucleic acids and hence can be a useful tool for nuclear DNA quantification and 3D volumetric nuclei extraction. This model is trained with dataset 1136, 1137, 1139, 1170 and validated with 1135. Patch size for this model during inference can be flexible.", - "download_count": 3457, + "download_count": 3467, "id": "10.5281/zenodo.8401064", "license": "CC-BY-4.0", "links": [ @@ -2128,7 +2128,7 @@ ], "created": "2023-07-21 09:09:49.349470", "description": "Prediction enhancer for segmenting cell boundaries in EM images.", - "download_count": 2475, + "download_count": 2477, "id": "10.5281/zenodo.8142283", "license": "MIT", "links": [ @@ -2167,7 +2167,7 @@ ], "created": "2023-02-06 13:30:05.714615", "description": "Light-sheet and light-field images of beating and arrested hatchling (8 dpf) medaka hearts used in \"Deep learning-enhanced light-field imaging with continuous validation\" to train and evaluate a HyLFM-Net.", - "download_count": 2338, + "download_count": 2339, "id": "10.5281/zenodo.7612115", "license": "MIT", "name": "Hatchling Medaka Heart (HyLFM)", diff --git a/rdf.json b/rdf.json index 5d7db216d..02cbfd293 100644 --- a/rdf.json +++ b/rdf.json @@ -23,7 +23,7 @@ ], "created": "2022-06-15 22:06:22.658325", "description": "Nucleus segmentation for fluorescence microscopy", - "download_count": 68528, + "download_count": 68611, "id": "10.5281/zenodo.5764892", "license": "CC-BY-4.0", "links": [ @@ -72,7 +72,7 @@ ], "created": "2022-03-08 18:36:28.378522", "description": "StarDist - Object Detection with Star-convex Shapes", - "download_count": 53947, + "download_count": 53955, "id": "10.5281/zenodo.6338614", "license": "BSD-3-Clause", "links": [ @@ -119,7 +119,7 @@ ], "created": "2022-06-15 22:09:35.368273", "description": "Cell segmentation for phase-contrast microscopy.", - "download_count": 45474, + "download_count": 45488, "id": "10.5281/zenodo.5869899", "license": "CC-BY-4.0", "links": [ @@ -164,7 +164,7 @@ ], "created": "2022-01-18 22:01:09.315638", "description": "Neuron segmentation in EM, trained on the CREMI challenge data.", - "download_count": 44840, + "download_count": 44848, "id": "10.5281/zenodo.5874741", "license": "CC-BY-4.0", "links": [ @@ -215,7 +215,7 @@ ], "created": "2023-07-26 10:47:44.642355", "description": "DeepImageJ compatible U-Net trained to segment phase contrast microscopy images of pancreatic stem cells on a 2D polystyrene substrate.", - "download_count": 42680, + "download_count": 42690, "id": "10.5281/zenodo.5914248", "license": "BSD-2-Clause", "links": [ @@ -266,7 +266,7 @@ ], "created": "2022-07-08 17:02:28.049385", "description": "Prediction enhancer for segmenting mitochondria in EM images.", - "download_count": 41317, + "download_count": 41327, "id": "10.5281/zenodo.6406756", "license": "CC-BY-4.0", "links": [ @@ -311,7 +311,7 @@ ], "created": "2022-06-10 06:22:28.465944", "description": "Mitochondria segmentation for electron microscopy.", - "download_count": 40426, + "download_count": 40429, "id": "10.5281/zenodo.5874841", "license": "CC-BY-4.0", "links": [ @@ -357,7 +357,7 @@ ], "created": "2022-01-21 14:50:48.356997", "description": "A 3D U-net to predict cell membranes in plant tissues, trained on volumes of Arabidopsis thaliana ovules acquired on a confocal microscope.", - "download_count": 40168, + "download_count": 40175, "id": "10.5281/zenodo.5749843", "license": "MIT", "links": [ @@ -404,7 +404,7 @@ ], "created": "2022-02-09 21:14:46.430029", "description": "{organelle} segmentation in EM of platynereis.", - "download_count": 39730, + "download_count": 39731, "id": "10.5281/zenodo.6028097", "license": "CC-BY-4.0", "links": [ @@ -453,7 +453,7 @@ ], "created": "2022-03-11 22:32:05.554959", "description": "StarDist - Object Detection with Star-convex Shapes", - "download_count": 39328, + "download_count": 39340, "id": "10.5281/zenodo.6348084", "license": "BSD-3-Clause", "links": [ @@ -504,7 +504,7 @@ ], "created": "2023-03-29 18:14:39.826271", "description": "This trained 2D U-Net model segments the contour, foreground and background of Bacillus Subtilis bacteria imaged with Widefield microscopy images. To obtain a unique label for each individual bacteria detected in the image one could run further watershed segmentation using the label 1 as the seed.", - "download_count": 38416, + "download_count": 38421, "id": "10.5281/zenodo.7261974", "license": "MIT", "links": [ @@ -561,7 +561,7 @@ ], "created": "2022-06-15 22:12:29.012734", "description": "Cell segmentation in EM of platynereis.", - "download_count": 37717, + "download_count": 37719, "id": "10.5281/zenodo.6028280", "license": "CC-BY-4.0", "links": [ @@ -604,7 +604,7 @@ ], "created": "2023-03-06 19:01:04.321374", "description": "Cell segmentation model for segmenting images from the Human Protein Atlas", - "download_count": 36951, + "download_count": 36956, "id": "10.5281/zenodo.6200635", "license": "CC-BY-4.0", "links": [ @@ -645,7 +645,7 @@ ], "created": "2022-03-12 09:56:33.055323", "description": "Perform leaf segmentation in light microscopy images of Arabidopsis", - "download_count": 36488, + "download_count": 36489, "id": "10.5281/zenodo.6348728", "license": "MIT", "links": [ @@ -690,7 +690,7 @@ ], "created": "2023-03-24 17:08:34.402776", "description": "3D Unet trained on confocal images of Arabidopsis thaliana apical stem cell: https://www.repository.cam.ac.uk/handle/1810/262530. Voxel size: [0.25, 0.25, 0.25]", - "download_count": 36451, + "download_count": 36455, "id": "10.5281/zenodo.6346511", "license": "MIT", "links": [ @@ -745,7 +745,7 @@ ], "created": "2022-01-27 14:00:17.489637", "description": "2D UNet trained using ZeroCostDL4Mic notebooks on data from ISBI Challenge for neuron segmentation in Transmission Electron Microscopy images.", - "download_count": 35778, + "download_count": 35781, "id": "10.5281/zenodo.5817052", "license": "MIT", "links": [ @@ -790,7 +790,7 @@ ], "created": "2022-06-15 22:08:13.874556", "description": "Cell segmentation for immunofluorescence microscopy.", - "download_count": 35291, + "download_count": 35330, "id": "10.5281/zenodo.5847355", "license": "CC-BY-4.0", "links": [ @@ -835,7 +835,7 @@ ], "created": "2022-04-01 16:06:28.519947", "description": "Segmentation of mitochondria in EM images.", - "download_count": 34684, + "download_count": 34688, "id": "10.5281/zenodo.6406803", "license": "CC-BY-4.0", "links": [ @@ -880,7 +880,7 @@ ], "created": "2023-03-02 05:53:45.695883", "description": "Nuclei segmentation model for segmenting images from the Human Protein Atlas", - "download_count": 33211, + "download_count": 33218, "id": "10.5281/zenodo.6200999", "license": "CC-BY-4.0", "links": [ @@ -923,7 +923,7 @@ ], "created": "2023-03-27 12:11:52.357154", "description": "A 3D U-Net trained to predict the cell boundaries in live light sheet images of developing mouse embryo. Voxel size: 0.2\u00d70.2\u00d71.0 \u00b5m^3", - "download_count": 31663, + "download_count": 31667, "id": "10.5281/zenodo.6384845", "license": "MIT", "links": [ @@ -976,7 +976,7 @@ ], "created": "2023-03-27 12:14:49.467153", "description": "A 3D U-Net trained to predict the nuclei and their boundaries in fixed confocal images of developing mouse embryo.Voxel size: (0.2\u00d70.2\u00d71 \u00b5m^3) (XYZ).", - "download_count": 30741, + "download_count": 30745, "id": "10.5281/zenodo.6383429", "license": "MIT", "links": [ @@ -1024,7 +1024,7 @@ ], "created": "2023-03-03 13:09:05.981223", "description": "affinity-model", - "download_count": 29401, + "download_count": 29407, "id": "10.5281/zenodo.6079314", "license": "CC-BY-4.0", "links": [ @@ -1072,7 +1072,7 @@ ], "created": "2023-04-06 10:47:26.453147", "description": "2D Unet trained on confocal images of Arabidopsis Ovules", - "download_count": 28019, + "download_count": 28027, "id": "10.5281/zenodo.6334383", "license": "MIT", "links": [ @@ -1121,7 +1121,7 @@ ], "created": "2023-03-23 21:42:30.250688", "description": "A 3D U-Net trained to predict the cell boundaries in lightsheet stacks of Arabidopsis Lateral Root Primordia. (0.25x0.1625x0.1625) microns ZYX", - "download_count": 25765, + "download_count": 25770, "id": "10.5281/zenodo.6334777", "license": "MIT", "links": [ @@ -1177,7 +1177,7 @@ ], "created": "2023-04-06 10:26:25.873589", "description": "2D Unet trained on z-slices of confocal images of Arabidopsis thaliana apical stem cells", - "download_count": 25668, + "download_count": 25676, "id": "10.5281/zenodo.6334881", "license": "MIT", "links": [ @@ -1221,7 +1221,7 @@ ], "created": "2022-05-11 12:52:23.766143", "description": "The winning model of HPA image classification 2021 by Bestfitting", - "download_count": 25421, + "download_count": 25424, "id": "10.5281/zenodo.5910854", "license": "MIT", "links": [ @@ -1267,7 +1267,7 @@ ], "created": "2023-04-06 12:43:33.436336", "description": "A 3d U-Net trained to predict the cell boundaries in confocal stacks of Arabidopsis ovules. Voxel size: (0.235, 0.150, 0.150) microns ZYX", - "download_count": 24109, + "download_count": 24118, "id": "10.5281/zenodo.6334583", "license": "MIT", "links": [ @@ -1318,7 +1318,7 @@ ], "created": "2022-07-08 14:35:48.861260", "description": "Prediction enhancer for segmenting mitochondria in EM images.", - "download_count": 23598, + "download_count": 23600, "id": "10.5281/zenodo.6811491", "license": "CC-BY-4.0", "links": [ @@ -1382,7 +1382,7 @@ ], "created": "2022-05-18 09:42:30.953891", "description": "DeepImageJ compatible fully residual U-Net trained to segment small extracellular vesicles in 2D TEM images", - "download_count": 23039, + "download_count": 23040, "download_url": "https://zenodo.org/api/records/6559475/files/deepimagej_fru-net_sev_segmentation.zip/content", "id": "10.5281/zenodo.6559474", "license": "BSD-3-Clause", @@ -1429,7 +1429,7 @@ ], "created": "2022-02-01 22:38:38.088910", "description": "The winning model of HPA image classification 2019 by Bestfitting", - "download_count": 21204, + "download_count": 21206, "id": "10.5281/zenodo.5910163", "license": "MIT", "links": [ @@ -1468,7 +1468,7 @@ ], "created": "2022-07-28 07:37:36.393648", "description": "DeepImageJ compatible FRUNet trained to subtly segment cells and gland.", - "download_count": 20694, + "download_count": 20704, "id": "10.5281/zenodo.6865412", "license": "CC-BY-4.0", "name": "Cells and gland Segmentation (FRUNet)", @@ -1503,7 +1503,7 @@ ], "created": "2023-07-07 10:12:51.478763", "description": "Cellular membrane prediction model for volume SEM datasets", - "download_count": 19070, + "download_count": 19082, "id": "10.5281/zenodo.7274275", "license": "CC-BY-4.0", "links": [ @@ -1549,7 +1549,7 @@ ], "created": "2022-07-07 21:30:58.116303", "description": "Prediction enhancer for segmenting cell boundaries in EM images.", - "download_count": 18687, + "download_count": 18689, "id": "10.5281/zenodo.6808325", "license": "CC-BY-4.0", "links": [ @@ -1611,7 +1611,7 @@ ], "created": "2022-11-12 12:53:32.701172", "description": "EmbryoNet Model by embryoNet Team", - "download_count": 13956, + "download_count": 13960, "id": "10.5281/zenodo.7315440", "license": "GPL-3.0", "links": [ @@ -1651,7 +1651,7 @@ ], "created": "2023-02-15 09:34:43.433531", "description": "HyLFM-Net trained on static images of arrested medaka hatchling hearts. The network reconstructs a volumentric image from a given light-field.", - "download_count": 12671, + "download_count": 12673, "id": "10.5281/zenodo.7614645", "license": "MIT", "links": [ @@ -1700,7 +1700,7 @@ ], "created": "2022-12-06 13:55:39.060882", "description": "For segmenting 2D projections of drosophila epithelia", - "download_count": 12665, + "download_count": 12668, "id": "10.5281/zenodo.7380171", "license": "CC-BY-4.0", "name": "Drosophila epithelia cell boundary segmentation of 2D projections", @@ -1740,7 +1740,7 @@ ], "created": "2023-03-29 11:10:26.329999", "description": "Unet trained on confocal images of Arabidopsis Ovules nuclei", - "download_count": 12425, + "download_count": 12430, "id": "10.5281/zenodo.7772662", "license": "MIT", "links": [ @@ -1790,7 +1790,7 @@ ], "created": "2023-03-30 16:57:43.433376", "description": "Wasserstein GAN (WGAN) trained for super-resolution of confocal scanning microscopy images of mitochondria in U2OS cells. Mitochondria were labelled with MitoTracker and the model was trained to upsample the images by a factor of 4.", - "download_count": 10078, + "download_count": 10080, "id": "10.5281/zenodo.7786492", "license": "MIT", "links": [ @@ -1837,7 +1837,7 @@ ], "created": "2023-10-11 17:13:48.737609", "description": "This widely applicable model is trained for 3D nuclei instance segmentation and with 3D nuclei images of Arabidopsis ovules with TO-PRO-3 stain. TO-PRO-3 nuclei stain detects double-stranded nucleic acids and hence can be a useful tool for nuclear DNA quantification and 3D volumetric nuclei extraction. This model is trained with dataset 1136, 1137, 1139, 1170 and validated with 1135.", - "download_count": 8377, + "download_count": 8397, "id": "10.5281/zenodo.8421755", "license": "CC-BY-4.0", "links": [ @@ -1884,7 +1884,7 @@ ], "created": "2023-06-23 10:23:37.255827", "description": "Label-free prediction of fluorescence images from brightield images", - "download_count": 6731, + "download_count": 6733, "id": "10.5281/zenodo.8064806", "license": "Apache-2.0", "links": [ @@ -1942,7 +1942,7 @@ ], "created": "2022-05-18 10:12:14.635800", "description": "DeepImageJ compatible fully residual U-Net trained to segment small extracellular vesicles in 2D TEM images", - "download_count": 6631, + "download_count": 6633, "download_url": "https://cbia.fi.muni.cz/files/segmentation/fru-net/FRU_processing.zip", "id": "10.5281/zenodo.6559929", "license": "MIT", @@ -1994,7 +1994,7 @@ ], "created": "2023-10-09 06:57:28.189519", "description": "Pre-training a Foundation Model for Universal Fluorescence Microscopy Image Restoration", - "download_count": 5746, + "download_count": 5750, "id": "10.5281/zenodo.8419845", "license": "CC-BY-4.0", "name": "UniFMIRSuperResolutionOnMicrotubules", @@ -2040,7 +2040,7 @@ ], "created": "2023-10-09 07:05:52.763368", "description": "Pre-training a Foundation Model for Universal Fluorescence Microscopy Image Restoration", - "download_count": 4479, + "download_count": 4480, "id": "10.5281/zenodo.8420099", "license": "CC-BY-4.0", "links": [ @@ -2081,7 +2081,7 @@ ], "created": "2023-10-11 00:39:40.958129", "description": "This widely applicable model is trained for 3D nuclei instance segmentation and with 3D nuclei images of Arabidopsis ovules with TO-PRO-3 stain. TO-PRO-3 nuclei stain detects double-stranded nucleic acids and hence can be a useful tool for nuclear DNA quantification and 3D volumetric nuclei extraction. This model is trained with dataset 1136, 1137, 1139, 1170 and validated with 1135. Patch size for this model during inference can be flexible.", - "download_count": 3457, + "download_count": 3467, "id": "10.5281/zenodo.8401064", "license": "CC-BY-4.0", "links": [ @@ -2128,7 +2128,7 @@ ], "created": "2023-07-21 09:09:49.349470", "description": "Prediction enhancer for segmenting cell boundaries in EM images.", - "download_count": 2475, + "download_count": 2477, "id": "10.5281/zenodo.8142283", "license": "MIT", "links": [ @@ -2167,7 +2167,7 @@ ], "created": "2023-02-06 13:30:05.714615", "description": "Light-sheet and light-field images of beating and arrested hatchling (8 dpf) medaka hearts used in \"Deep learning-enhanced light-field imaging with continuous validation\" to train and evaluate a HyLFM-Net.", - "download_count": 2338, + "download_count": 2339, "id": "10.5281/zenodo.7612115", "license": "MIT", "name": "Hatchling Medaka Heart (HyLFM)", diff --git a/rdf.yaml b/rdf.yaml index a1338dd89..f6df743ce 100644 --- a/rdf.yaml +++ b/rdf.yaml @@ -8,7 +8,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.5764892/6322939/cover.png'] created: '2022-06-15 22:06:22.658325' description: Nucleus segmentation for fluorescence microscopy - download_count: 68528 + download_count: 68611 id: 10.5281/zenodo.5764892 license: CC-BY-4.0 links: [ilastik/stardist_dsb_training_data, ilastik/ilastik, deepimagej/deepimagej, @@ -29,7 +29,7 @@ collection: 'https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6338614/6338615/example_histo.jpg'] created: '2022-03-08 18:36:28.378522' description: StarDist - Object Detection with Star-convex Shapes - download_count: 53947 + download_count: 53955 id: 10.5281/zenodo.6338614 license: BSD-3-Clause links: [deepimagej/deepimagej, imjoy/BioImageIO-Packager, ilastik/tnbc, bioimageio/stardist, @@ -49,7 +49,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.5869899/5869900/cover.png'] created: '2022-06-15 22:09:35.368273' description: Cell segmentation for phase-contrast microscopy. - download_count: 45474 + download_count: 45488 id: 10.5281/zenodo.5869899 license: CC-BY-4.0 links: [ilastik/livecell_dataset, ilastik/ilastik, deepimagej/deepimagej, imjoy/BioImageIO-Packager] @@ -68,7 +68,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.5874741/5874742/cover.png'] created: '2022-01-18 22:01:09.315638' description: Neuron segmentation in EM, trained on the CREMI challenge data. - download_count: 44840 + download_count: 44848 id: 10.5281/zenodo.5874741 license: CC-BY-4.0 links: [deepimagej/deepimagej, ilastik/ilastik, imjoy/BioImageIO-Packager, ilastik/torch-em-3d-unet-notebook] @@ -90,7 +90,7 @@ collection: created: '2023-07-26 10:47:44.642355' description: DeepImageJ compatible U-Net trained to segment phase contrast microscopy images of pancreatic stem cells on a 2D polystyrene substrate. - download_count: 42680 + download_count: 42690 id: 10.5281/zenodo.5914248 license: BSD-2-Clause links: [imjoy/BioImageIO-Packager, deepimagej/deepimagej, ilastik/ilastik, deepimagej/unet-pancreaticcellsegmentation, @@ -110,7 +110,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6406756/6406757/cover.png'] created: '2022-07-08 17:02:28.049385' description: Prediction enhancer for segmenting mitochondria in EM images. - download_count: 41317 + download_count: 41327 id: 10.5281/zenodo.6406756 license: CC-BY-4.0 links: [ilastik/torch-em-2d-unet-notebook, ilastik/ilastik, deepimagej/deepimagej, @@ -130,7 +130,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.5874841/5874842/cover.png'] created: '2022-06-10 06:22:28.465944' description: Mitochondria segmentation for electron microscopy. - download_count: 40426 + download_count: 40429 id: 10.5281/zenodo.5874841 license: CC-BY-4.0 links: [deepimagej/deepimagej, ilastik/ilastik, ilastik/mitoem_segmentation_challenge, @@ -151,7 +151,7 @@ collection: created: '2022-01-21 14:50:48.356997' description: A 3D U-net to predict cell membranes in plant tissues, trained on volumes of Arabidopsis thaliana ovules acquired on a confocal microscope. - download_count: 40168 + download_count: 40175 id: 10.5281/zenodo.5749843 license: MIT links: [imjoy/BioImageIO-Packager, ilastik/ilastik, deepimagej/deepimagej, zero/notebook_u-net_3d_zerocostdl4mic] @@ -170,7 +170,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6028097/6028098/cover.png'] created: '2022-02-09 21:14:46.430029' description: '{organelle} segmentation in EM of platynereis.' - download_count: 39730 + download_count: 39731 id: 10.5281/zenodo.6028097 license: CC-BY-4.0 links: [deepimagej/deepimagej, ilastik/ilastik, imjoy/BioImageIO-Packager, ilastik/torch-em-3d-unet-notebook] @@ -190,7 +190,7 @@ collection: 'https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6348084/6348085/example_fluo.jpg'] created: '2022-03-11 22:32:05.554959' description: StarDist - Object Detection with Star-convex Shapes - download_count: 39328 + download_count: 39340 id: 10.5281/zenodo.6348084 license: BSD-3-Clause links: [deepimagej/deepimagej, imjoy/BioImageIO-Packager, bioimageio/stardist, bioimageio/qupath] @@ -213,7 +213,7 @@ collection: of Bacillus Subtilis bacteria imaged with Widefield microscopy images. To obtain a unique label for each individual bacteria detected in the image one could run further watershed segmentation using the label 1 as the seed. - download_count: 38416 + download_count: 38421 id: 10.5281/zenodo.7261974 license: MIT links: [deepimagej/deepimagej, imjoy/BioImageIO-Packager, zero/dataset_u-net_2d_multilabel_deepbacs, @@ -235,7 +235,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6028280/6028281/cover.png'] created: '2022-06-15 22:12:29.012734' description: Cell segmentation in EM of platynereis. - download_count: 37717 + download_count: 37719 id: 10.5281/zenodo.6028280 license: CC-BY-4.0 links: [deepimagej/deepimagej, ilastik/platynereis_em_training_data, ilastik/ilastik, @@ -255,7 +255,7 @@ collection: created: '2023-03-06 19:01:04.321374' description: Cell segmentation model for segmenting images from the Human Protein Atlas - download_count: 36951 + download_count: 36956 id: 10.5281/zenodo.6200635 license: CC-BY-4.0 links: [deepimagej/deepimagej, hpa/hpa-cell-image-segmentation-dataset, imjoy/BioImageIO-Packager] @@ -272,7 +272,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6348728/6348729/cover.png'] created: '2022-03-12 09:56:33.055323' description: Perform leaf segmentation in light microscopy images of Arabidopsis - download_count: 36488 + download_count: 36489 id: 10.5281/zenodo.6348728 license: MIT links: [deepimagej/deepimagej, imjoy/BioImageIO-Packager, ilastik/ilastik, zero/notebook_u-net_3d_zerocostdl4mic] @@ -294,7 +294,7 @@ collection: description: '3D Unet trained on confocal images of Arabidopsis thaliana apical stem cell: https://www.repository.cam.ac.uk/handle/1810/262530. Voxel size: [0.25, 0.25, 0.25]' - download_count: 36451 + download_count: 36455 id: 10.5281/zenodo.6346511 license: MIT links: [deepimagej/deepimagej, imjoy/BioImageIO-Packager] @@ -315,7 +315,7 @@ collection: created: '2022-01-27 14:00:17.489637' description: 2D UNet trained using ZeroCostDL4Mic notebooks on data from ISBI Challenge for neuron segmentation in Transmission Electron Microscopy images. - download_count: 35778 + download_count: 35781 id: 10.5281/zenodo.5817052 license: MIT links: [imjoy/BioImageIO-Packager, zero/notebook_u-net_2d_zerocostdl4mic_deepimagej, @@ -334,7 +334,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.5847355/6322908/cover.png'] created: '2022-06-15 22:08:13.874556' description: Cell segmentation for immunofluorescence microscopy. - download_count: 35291 + download_count: 35330 id: 10.5281/zenodo.5847355 license: CC-BY-4.0 links: [ilastik/covid_if_training_data, ilastik/ilastik, deepimagej/deepimagej, @@ -354,7 +354,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6406803/6406804/cover.png'] created: '2022-04-01 16:06:28.519947' description: Segmentation of mitochondria in EM images. - download_count: 34684 + download_count: 34688 id: 10.5281/zenodo.6406803 license: CC-BY-4.0 links: [deepimagej/deepimagej, ilastik/ilastik, imjoy/BioImageIO-Packager, ilastik/torch-em-2d-unet-notebook] @@ -374,7 +374,7 @@ collection: created: '2023-03-02 05:53:45.695883' description: Nuclei segmentation model for segmenting images from the Human Protein Atlas - download_count: 33211 + download_count: 33218 id: 10.5281/zenodo.6200999 license: CC-BY-4.0 links: [deepimagej/deepimagej] @@ -394,7 +394,7 @@ collection: created: '2023-03-27 12:11:52.357154' description: 'A 3D U-Net trained to predict the cell boundaries in live light sheet images of developing mouse embryo. Voxel size: 0.2×0.2×1.0 µm^3' - download_count: 31663 + download_count: 31667 id: 10.5281/zenodo.6384845 license: MIT links: [deepimagej/deepimagej, imjoy/BioImageIO-Packager] @@ -416,7 +416,7 @@ collection: created: '2023-03-27 12:14:49.467153' description: 'A 3D U-Net trained to predict the nuclei and their boundaries in fixed confocal images of developing mouse embryo.Voxel size: (0.2×0.2×1 µm^3) (XYZ).' - download_count: 30741 + download_count: 30745 id: 10.5281/zenodo.6383429 license: MIT links: [deepimagej/deepimagej, imjoy/BioImageIO-Packager] @@ -434,7 +434,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6079314/6079315/cover.png'] created: '2023-03-03 13:09:05.981223' description: affinity-model - download_count: 29401 + download_count: 29407 id: 10.5281/zenodo.6079314 license: CC-BY-4.0 links: [imjoy/BioImageIO-Packager, ilastik/torch-em-2d-unet-notebook, ilastik/ilastik, @@ -453,7 +453,7 @@ collection: 'https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6334383/6334384/pred.png'] created: '2023-04-06 10:47:26.453147' description: 2D Unet trained on confocal images of Arabidopsis Ovules - download_count: 28019 + download_count: 28027 id: 10.5281/zenodo.6334383 license: MIT links: [imjoy/BioImageIO-Packager] @@ -474,7 +474,7 @@ collection: created: '2023-03-23 21:42:30.250688' description: A 3D U-Net trained to predict the cell boundaries in lightsheet stacks of Arabidopsis Lateral Root Primordia. (0.25x0.1625x0.1625) microns ZYX - download_count: 25765 + download_count: 25770 id: 10.5281/zenodo.6334777 license: MIT links: [deepimagej/deepimagej, imjoy/BioImageIO-Packager] @@ -496,7 +496,7 @@ collection: created: '2023-04-06 10:26:25.873589' description: 2D Unet trained on z-slices of confocal images of Arabidopsis thaliana apical stem cells - download_count: 25668 + download_count: 25676 id: 10.5281/zenodo.6334881 license: MIT links: [imjoy/BioImageIO-Packager] @@ -514,7 +514,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.5910854/5911832/diagram-of-InceptionV3.png'] created: '2022-05-11 12:52:23.766143' description: The winning model of HPA image classification 2021 by Bestfitting - download_count: 25421 + download_count: 25424 id: 10.5281/zenodo.5910854 license: MIT links: [imjoy/BioImageIO-Packager, hpa/hpa-kaggle-2021-dataset] @@ -535,7 +535,7 @@ collection: created: '2023-04-06 12:43:33.436336' description: 'A 3d U-Net trained to predict the cell boundaries in confocal stacks of Arabidopsis ovules. Voxel size: (0.235, 0.150, 0.150) microns ZYX' - download_count: 24109 + download_count: 24118 id: 10.5281/zenodo.6334583 license: MIT links: [imjoy/BioImageIO-Packager] @@ -553,7 +553,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6811491/6811492/cover.png'] created: '2022-07-08 14:35:48.861260' description: Prediction enhancer for segmenting mitochondria in EM images. - download_count: 23598 + download_count: 23600 id: 10.5281/zenodo.6811491 license: CC-BY-4.0 links: [deepimagej/deepimagej, ilastik/torch-em-3d-unet-notebook, ilastik/ilastik, @@ -579,7 +579,7 @@ collection: created: '2022-05-18 09:42:30.953891' description: DeepImageJ compatible fully residual U-Net trained to segment small extracellular vesicles in 2D TEM images - download_count: 23039 + download_count: 23040 download_url: https://zenodo.org/api/records/6559475/files/deepimagej_fru-net_sev_segmentation.zip/content id: 10.5281/zenodo.6559474 license: BSD-3-Clause @@ -599,7 +599,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.5910163/5942853/bestfitting-densenet-diagram.png'] created: '2022-02-01 22:38:38.088910' description: The winning model of HPA image classification 2019 by Bestfitting - download_count: 21204 + download_count: 21206 id: 10.5281/zenodo.5910163 license: MIT links: [imjoy/BioImageIO-Packager] @@ -617,7 +617,7 @@ collection: 'https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6865412/6919253/lable.png'] created: '2022-07-28 07:37:36.393648' description: DeepImageJ compatible FRUNet trained to subtly segment cells and gland. - download_count: 20694 + download_count: 20704 id: 10.5281/zenodo.6865412 license: CC-BY-4.0 name: Cells and gland Segmentation (FRUNet) @@ -633,7 +633,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.7274275/7274276/coverimage.jpg'] created: '2023-07-07 10:12:51.478763' description: Cellular membrane prediction model for volume SEM datasets - download_count: 19070 + download_count: 19082 id: 10.5281/zenodo.7274275 license: CC-BY-4.0 links: [deepimagej/deepimagej] @@ -651,7 +651,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6808325/6808413/cover.png'] created: '2022-07-07 21:30:58.116303' description: Prediction enhancer for segmenting cell boundaries in EM images. - download_count: 18687 + download_count: 18689 id: 10.5281/zenodo.6808325 license: CC-BY-4.0 links: [ilastik/ilastik, deepimagej/deepimagej, ilastik/torch-em-3d-unet-notebook, @@ -675,7 +675,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.7315440/7315441/phenotypes_features.png'] created: '2022-11-12 12:53:32.701172' description: EmbryoNet Model by embryoNet Team - download_count: 13956 + download_count: 13960 id: 10.5281/zenodo.7315440 license: GPL-3.0 links: [Embryonet.de, imjoy/BioImageIO-Packager] @@ -693,7 +693,7 @@ collection: created: '2023-02-15 09:34:43.433531' description: HyLFM-Net trained on static images of arrested medaka hatchling hearts. The network reconstructs a volumentric image from a given light-field. - download_count: 12671 + download_count: 12673 id: 10.5281/zenodo.7614645 license: MIT links: [imjoy/BioImageIO-Packager] @@ -715,7 +715,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.7380171/7405349/cover.png'] created: '2022-12-06 13:55:39.060882' description: For segmenting 2D projections of drosophila epithelia - download_count: 12665 + download_count: 12668 id: 10.5281/zenodo.7380171 license: CC-BY-4.0 name: Drosophila epithelia cell boundary segmentation of 2D projections @@ -734,7 +734,7 @@ collection: 'https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.7772662/7781091/pmaps.png'] created: '2023-03-29 11:10:26.329999' description: Unet trained on confocal images of Arabidopsis Ovules nuclei - download_count: 12425 + download_count: 12430 id: 10.5281/zenodo.7772662 license: MIT links: [imjoy/BioImageIO-Packager] @@ -756,7 +756,7 @@ collection: description: Wasserstein GAN (WGAN) trained for super-resolution of confocal scanning microscopy images of mitochondria in U2OS cells. Mitochondria were labelled with MitoTracker and the model was trained to upsample the images by a factor of 4. - download_count: 10078 + download_count: 10080 id: 10.5281/zenodo.7786492 license: MIT links: [deepimagej/deepimagej, imjoy/BioImageIO-Packager] @@ -781,7 +781,7 @@ collection: nuclei stain detects double-stranded nucleic acids and hence can be a useful tool for nuclear DNA quantification and 3D volumetric nuclei extraction. This model is trained with dataset 1136, 1137, 1139, 1170 and validated with 1135. - download_count: 8377 + download_count: 8397 id: 10.5281/zenodo.8421755 license: CC-BY-4.0 links: [imjoy/BioImageIO-Packager] @@ -800,7 +800,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.8064806/8073617/cover.png'] created: '2023-06-23 10:23:37.255827' description: Label-free prediction of fluorescence images from brightield images - download_count: 6731 + download_count: 6733 id: 10.5281/zenodo.8064806 license: Apache-2.0 links: [imjoy/BioImageIO-Packager] @@ -823,7 +823,7 @@ collection: created: '2022-05-18 10:12:14.635800' description: DeepImageJ compatible fully residual U-Net trained to segment small extracellular vesicles in 2D TEM images - download_count: 6631 + download_count: 6633 download_url: https://cbia.fi.muni.cz/files/segmentation/fru-net/FRU_processing.zip id: 10.5281/zenodo.6559929 license: MIT @@ -846,7 +846,7 @@ collection: created: '2023-10-09 06:57:28.189519' description: Pre-training a Foundation Model for Universal Fluorescence Microscopy Image Restoration - download_count: 5746 + download_count: 5750 id: 10.5281/zenodo.8419845 license: CC-BY-4.0 name: UniFMIRSuperResolutionOnMicrotubules @@ -867,7 +867,7 @@ collection: created: '2023-10-09 07:05:52.763368' description: Pre-training a Foundation Model for Universal Fluorescence Microscopy Image Restoration - download_count: 4479 + download_count: 4480 id: 10.5281/zenodo.8420099 license: CC-BY-4.0 links: [imjoy/BioImageIO-Packager] @@ -892,7 +892,7 @@ collection: for nuclear DNA quantification and 3D volumetric nuclei extraction. This model is trained with dataset 1136, 1137, 1139, 1170 and validated with 1135. Patch size for this model during inference can be flexible. - download_count: 3457 + download_count: 3467 id: 10.5281/zenodo.8401064 license: CC-BY-4.0 links: [imjoy/BioImageIO-Packager] @@ -910,7 +910,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.8142283/8171247/cover.png'] created: '2023-07-21 09:09:49.349470' description: Prediction enhancer for segmenting cell boundaries in EM images. - download_count: 2475 + download_count: 2477 id: 10.5281/zenodo.8142283 license: MIT links: [imjoy/BioImageIO-Packager] @@ -929,7 +929,7 @@ collection: description: Light-sheet and light-field images of beating and arrested hatchling (8 dpf) medaka hearts used in "Deep learning-enhanced light-field imaging with continuous validation" to train and evaluate a HyLFM-Net. - download_count: 2338 + download_count: 2339 id: 10.5281/zenodo.7612115 license: MIT name: Hatchling Medaka Heart (HyLFM)