diff --git a/collection.json b/collection.json index b94cae3b9..220ced86f 100644 --- a/collection.json +++ b/collection.json @@ -23,7 +23,7 @@ ], "created": "2022-06-15 22:06:22.658325", "description": "Nucleus segmentation for fluorescence microscopy", - "download_count": 69552, + "download_count": 69743, "id": "10.5281/zenodo.5764892", "license": "CC-BY-4.0", "links": [ @@ -72,7 +72,7 @@ ], "created": "2022-03-08 18:36:28.378522", "description": "StarDist - Object Detection with Star-convex Shapes", - "download_count": 54339, + "download_count": 54424, "id": "10.5281/zenodo.6338614", "license": "BSD-3-Clause", "links": [ @@ -119,7 +119,7 @@ ], "created": "2022-06-15 22:09:35.368273", "description": "Cell segmentation for phase-contrast microscopy.", - "download_count": 45677, + "download_count": 45693, "id": "10.5281/zenodo.5869899", "license": "CC-BY-4.0", "links": [ @@ -164,7 +164,7 @@ ], "created": "2022-01-18 22:01:09.315638", "description": "Neuron segmentation in EM, trained on the CREMI challenge data.", - "download_count": 44912, + "download_count": 44913, "id": "10.5281/zenodo.5874741", "license": "CC-BY-4.0", "links": [ @@ -215,7 +215,7 @@ ], "created": "2023-07-26 10:47:44.642355", "description": "DeepImageJ compatible U-Net trained to segment phase contrast microscopy images of pancreatic stem cells on a 2D polystyrene substrate.", - "download_count": 42867, + "download_count": 42877, "id": "10.5281/zenodo.5914248", "license": "BSD-2-Clause", "links": [ @@ -266,7 +266,7 @@ ], "created": "2022-07-08 17:02:28.049385", "description": "Prediction enhancer for segmenting mitochondria in EM images.", - "download_count": 41712, + "download_count": 41787, "id": "10.5281/zenodo.6406756", "license": "CC-BY-4.0", "links": [ @@ -311,7 +311,7 @@ ], "created": "2022-06-10 06:22:28.465944", "description": "Mitochondria segmentation for electron microscopy.", - "download_count": 40461, + "download_count": 40463, "id": "10.5281/zenodo.5874841", "license": "CC-BY-4.0", "links": [ @@ -357,7 +357,7 @@ ], "created": "2022-01-21 14:50:48.356997", "description": "A 3D U-net to predict cell membranes in plant tissues, trained on volumes of Arabidopsis thaliana ovules acquired on a confocal microscope.", - "download_count": 40254, + "download_count": 40257, "id": "10.5281/zenodo.5749843", "license": "MIT", "links": [ @@ -404,7 +404,7 @@ ], "created": "2022-02-09 21:14:46.430029", "description": "{organelle} segmentation in EM of platynereis.", - "download_count": 39767, + "download_count": 39769, "id": "10.5281/zenodo.6028097", "license": "CC-BY-4.0", "links": [ @@ -453,7 +453,7 @@ ], "created": "2022-03-11 22:32:05.554959", "description": "StarDist - Object Detection with Star-convex Shapes", - "download_count": 39540, + "download_count": 39552, "id": "10.5281/zenodo.6348084", "license": "BSD-3-Clause", "links": [ @@ -504,7 +504,7 @@ ], "created": "2023-03-29 18:14:39.826271", "description": "This trained 2D U-Net model segments the contour, foreground and background of Bacillus Subtilis bacteria imaged with Widefield microscopy images. To obtain a unique label for each individual bacteria detected in the image one could run further watershed segmentation using the label 1 as the seed.", - "download_count": 38902, + "download_count": 38985, "id": "10.5281/zenodo.7261974", "license": "MIT", "links": [ @@ -561,7 +561,7 @@ ], "created": "2022-06-15 22:12:29.012734", "description": "Cell segmentation in EM of platynereis.", - "download_count": 37748, + "download_count": 37750, "id": "10.5281/zenodo.6028280", "license": "CC-BY-4.0", "links": [ @@ -604,7 +604,7 @@ ], "created": "2023-03-06 19:01:04.321374", "description": "Cell segmentation model for segmenting images from the Human Protein Atlas", - "download_count": 37026, + "download_count": 37047, "id": "10.5281/zenodo.6200635", "license": "CC-BY-4.0", "links": [ @@ -648,7 +648,7 @@ ], "created": "2023-03-24 17:08:34.402776", "description": "3D Unet trained on confocal images of Arabidopsis thaliana apical stem cell: https://www.repository.cam.ac.uk/handle/1810/262530. Voxel size: [0.25, 0.25, 0.25]", - "download_count": 36586, + "download_count": 36593, "id": "10.5281/zenodo.6346511", "license": "MIT", "links": [ @@ -697,7 +697,7 @@ ], "created": "2022-03-12 09:56:33.055323", "description": "Perform leaf segmentation in light microscopy images of Arabidopsis", - "download_count": 36539, + "download_count": 36544, "id": "10.5281/zenodo.6348728", "license": "MIT", "links": [ @@ -745,7 +745,7 @@ ], "created": "2022-01-27 14:00:17.489637", "description": "2D UNet trained using ZeroCostDL4Mic notebooks on data from ISBI Challenge for neuron segmentation in Transmission Electron Microscopy images.", - "download_count": 35857, + "download_count": 35860, "id": "10.5281/zenodo.5817052", "license": "MIT", "links": [ @@ -790,7 +790,7 @@ ], "created": "2022-06-15 22:08:13.874556", "description": "Cell segmentation for immunofluorescence microscopy.", - "download_count": 35403, + "download_count": 35407, "id": "10.5281/zenodo.5847355", "license": "CC-BY-4.0", "links": [ @@ -835,7 +835,7 @@ ], "created": "2022-04-01 16:06:28.519947", "description": "Segmentation of mitochondria in EM images.", - "download_count": 34738, + "download_count": 34748, "id": "10.5281/zenodo.6406803", "license": "CC-BY-4.0", "links": [ @@ -880,7 +880,7 @@ ], "created": "2023-03-02 05:53:45.695883", "description": "Nuclei segmentation model for segmenting images from the Human Protein Atlas", - "download_count": 33306, + "download_count": 33319, "id": "10.5281/zenodo.6200999", "license": "CC-BY-4.0", "links": [ @@ -923,7 +923,7 @@ ], "created": "2023-03-27 12:11:52.357154", "description": "A 3D U-Net trained to predict the cell boundaries in live light sheet images of developing mouse embryo. Voxel size: 0.2\u00d70.2\u00d71.0 \u00b5m^3", - "download_count": 31707, + "download_count": 31711, "id": "10.5281/zenodo.6384845", "license": "MIT", "links": [ @@ -976,7 +976,7 @@ ], "created": "2023-03-27 12:14:49.467153", "description": "A 3D U-Net trained to predict the nuclei and their boundaries in fixed confocal images of developing mouse embryo.Voxel size: (0.2\u00d70.2\u00d71 \u00b5m^3) (XYZ).", - "download_count": 30795, + "download_count": 30799, "id": "10.5281/zenodo.6383429", "license": "MIT", "links": [ @@ -1024,7 +1024,7 @@ ], "created": "2023-03-03 13:09:05.981223", "description": "affinity-model", - "download_count": 29496, + "download_count": 29502, "id": "10.5281/zenodo.6079314", "license": "CC-BY-4.0", "links": [ @@ -1072,7 +1072,7 @@ ], "created": "2023-04-06 10:47:26.453147", "description": "2D Unet trained on confocal images of Arabidopsis Ovules", - "download_count": 28111, + "download_count": 28121, "id": "10.5281/zenodo.6334383", "license": "MIT", "links": [ @@ -1121,7 +1121,7 @@ ], "created": "2023-03-23 21:42:30.250688", "description": "A 3D U-Net trained to predict the cell boundaries in lightsheet stacks of Arabidopsis Lateral Root Primordia. (0.25x0.1625x0.1625) microns ZYX", - "download_count": 25828, + "download_count": 25833, "id": "10.5281/zenodo.6334777", "license": "MIT", "links": [ @@ -1177,7 +1177,7 @@ ], "created": "2023-04-06 10:26:25.873589", "description": "2D Unet trained on z-slices of confocal images of Arabidopsis thaliana apical stem cells", - "download_count": 25778, + "download_count": 25795, "id": "10.5281/zenodo.6334881", "license": "MIT", "links": [ @@ -1221,7 +1221,7 @@ ], "created": "2022-05-11 12:52:23.766143", "description": "The winning model of HPA image classification 2021 by Bestfitting", - "download_count": 25450, + "download_count": 25456, "id": "10.5281/zenodo.5910854", "license": "MIT", "links": [ @@ -1267,7 +1267,7 @@ ], "created": "2023-04-06 12:43:33.436336", "description": "A 3d U-Net trained to predict the cell boundaries in confocal stacks of Arabidopsis ovules. Voxel size: (0.235, 0.150, 0.150) microns ZYX", - "download_count": 24211, + "download_count": 24219, "id": "10.5281/zenodo.6334583", "license": "MIT", "links": [ @@ -1318,7 +1318,7 @@ ], "created": "2022-07-08 14:35:48.861260", "description": "Prediction enhancer for segmenting mitochondria in EM images.", - "download_count": 23625, + "download_count": 23626, "id": "10.5281/zenodo.6811491", "license": "CC-BY-4.0", "links": [ @@ -1382,7 +1382,7 @@ ], "created": "2022-05-18 09:42:30.953891", "description": "DeepImageJ compatible fully residual U-Net trained to segment small extracellular vesicles in 2D TEM images", - "download_count": 23077, + "download_count": 23079, "download_url": "https://zenodo.org/api/records/6559475/files/deepimagej_fru-net_sev_segmentation.zip/content", "id": "10.5281/zenodo.6559474", "license": "BSD-3-Clause", @@ -1429,7 +1429,7 @@ ], "created": "2022-02-01 22:38:38.088910", "description": "The winning model of HPA image classification 2019 by Bestfitting", - "download_count": 21220, + "download_count": 21222, "id": "10.5281/zenodo.5910163", "license": "MIT", "links": [ @@ -1468,7 +1468,7 @@ ], "created": "2022-07-28 07:37:36.393648", "description": "DeepImageJ compatible FRUNet trained to subtly segment cells and gland.", - "download_count": 20771, + "download_count": 20779, "id": "10.5281/zenodo.6865412", "license": "CC-BY-4.0", "name": "Cells and gland Segmentation (FRUNet)", @@ -1503,7 +1503,7 @@ ], "created": "2023-07-07 10:12:51.478763", "description": "Cellular membrane prediction model for volume SEM datasets", - "download_count": 19166, + "download_count": 19182, "id": "10.5281/zenodo.7274275", "license": "CC-BY-4.0", "links": [ @@ -1549,7 +1549,7 @@ ], "created": "2022-07-07 21:30:58.116303", "description": "Prediction enhancer for segmenting cell boundaries in EM images.", - "download_count": 18717, + "download_count": 18719, "id": "10.5281/zenodo.6808325", "license": "CC-BY-4.0", "links": [ @@ -1611,7 +1611,7 @@ ], "created": "2022-11-12 12:53:32.701172", "description": "EmbryoNet Model by embryoNet Team", - "download_count": 13978, + "download_count": 13980, "id": "10.5281/zenodo.7315440", "license": "GPL-3.0", "links": [ @@ -1651,7 +1651,7 @@ ], "created": "2023-02-15 09:34:43.433531", "description": "HyLFM-Net trained on static images of arrested medaka hatchling hearts. The network reconstructs a volumentric image from a given light-field.", - "download_count": 12721, + "download_count": 12725, "id": "10.5281/zenodo.7614645", "license": "MIT", "links": [ @@ -1700,7 +1700,7 @@ ], "created": "2022-12-06 13:55:39.060882", "description": "For segmenting 2D projections of drosophila epithelia", - "download_count": 12694, + "download_count": 12697, "id": "10.5281/zenodo.7380171", "license": "CC-BY-4.0", "name": "Drosophila epithelia cell boundary segmentation of 2D projections", @@ -1740,7 +1740,7 @@ ], "created": "2023-03-29 11:10:26.329999", "description": "Unet trained on confocal images of Arabidopsis Ovules nuclei", - "download_count": 12466, + "download_count": 12471, "id": "10.5281/zenodo.7772662", "license": "MIT", "links": [ @@ -1790,7 +1790,7 @@ ], "created": "2023-03-30 16:57:43.433376", "description": "Wasserstein GAN (WGAN) trained for super-resolution of confocal scanning microscopy images of mitochondria in U2OS cells. Mitochondria were labelled with MitoTracker and the model was trained to upsample the images by a factor of 4.", - "download_count": 10144, + "download_count": 10145, "id": "10.5281/zenodo.7786492", "license": "MIT", "links": [ @@ -1837,7 +1837,7 @@ ], "created": "2023-10-11 17:13:48.737609", "description": "This widely applicable model is trained for 3D nuclei instance segmentation and with 3D nuclei images of Arabidopsis ovules with TO-PRO-3 stain. TO-PRO-3 nuclei stain detects double-stranded nucleic acids and hence can be a useful tool for nuclear DNA quantification and 3D volumetric nuclei extraction. This model is trained with dataset 1136, 1137, 1139, 1170 and validated with 1135.", - "download_count": 8494, + "download_count": 8499, "id": "10.5281/zenodo.8421755", "license": "CC-BY-4.0", "links": [ @@ -1884,7 +1884,7 @@ ], "created": "2023-06-23 10:23:37.255827", "description": "Label-free prediction of fluorescence images from brightield images", - "download_count": 6768, + "download_count": 6770, "id": "10.5281/zenodo.8064806", "license": "Apache-2.0", "links": [ @@ -1942,7 +1942,7 @@ ], "created": "2022-05-18 10:12:14.635800", "description": "DeepImageJ compatible fully residual U-Net trained to segment small extracellular vesicles in 2D TEM images", - "download_count": 6652, + "download_count": 6655, "download_url": "https://cbia.fi.muni.cz/files/segmentation/fru-net/FRU_processing.zip", "id": "10.5281/zenodo.6559929", "license": "MIT", @@ -1994,7 +1994,7 @@ ], "created": "2023-10-09 06:57:28.189519", "description": "Pre-training a Foundation Model for Universal Fluorescence Microscopy Image Restoration", - "download_count": 5795, + "download_count": 5799, "id": "10.5281/zenodo.8419845", "license": "CC-BY-4.0", "name": "UniFMIRSuperResolutionOnMicrotubules", @@ -2040,7 +2040,7 @@ ], "created": "2023-10-09 07:05:52.763368", "description": "Pre-training a Foundation Model for Universal Fluorescence Microscopy Image Restoration", - "download_count": 4495, + "download_count": 4499, "id": "10.5281/zenodo.8420099", "license": "CC-BY-4.0", "links": [ @@ -2081,7 +2081,7 @@ ], "created": "2023-10-11 00:39:40.958129", "description": "This widely applicable model is trained for 3D nuclei instance segmentation and with 3D nuclei images of Arabidopsis ovules with TO-PRO-3 stain. TO-PRO-3 nuclei stain detects double-stranded nucleic acids and hence can be a useful tool for nuclear DNA quantification and 3D volumetric nuclei extraction. This model is trained with dataset 1136, 1137, 1139, 1170 and validated with 1135. Patch size for this model during inference can be flexible.", - "download_count": 3530, + "download_count": 3533, "id": "10.5281/zenodo.8401064", "license": "CC-BY-4.0", "links": [ @@ -2128,7 +2128,7 @@ ], "created": "2023-07-21 09:09:49.349470", "description": "Prediction enhancer for segmenting cell boundaries in EM images.", - "download_count": 2491, + "download_count": 2495, "id": "10.5281/zenodo.8142283", "license": "MIT", "links": [ @@ -2167,7 +2167,7 @@ ], "created": "2023-02-06 13:30:05.714615", "description": "Light-sheet and light-field images of beating and arrested hatchling (8 dpf) medaka hearts used in \"Deep learning-enhanced light-field imaging with continuous validation\" to train and evaluate a HyLFM-Net.", - "download_count": 2347, + "download_count": 2348, "id": "10.5281/zenodo.7612115", "license": "MIT", "name": "Hatchling Medaka Heart (HyLFM)", diff --git a/rdf.json b/rdf.json index b94cae3b9..220ced86f 100644 --- a/rdf.json +++ b/rdf.json @@ -23,7 +23,7 @@ ], "created": "2022-06-15 22:06:22.658325", "description": "Nucleus segmentation for fluorescence microscopy", - "download_count": 69552, + "download_count": 69743, "id": "10.5281/zenodo.5764892", "license": "CC-BY-4.0", "links": [ @@ -72,7 +72,7 @@ ], "created": "2022-03-08 18:36:28.378522", "description": "StarDist - Object Detection with Star-convex Shapes", - "download_count": 54339, + "download_count": 54424, "id": "10.5281/zenodo.6338614", "license": "BSD-3-Clause", "links": [ @@ -119,7 +119,7 @@ ], "created": "2022-06-15 22:09:35.368273", "description": "Cell segmentation for phase-contrast microscopy.", - "download_count": 45677, + "download_count": 45693, "id": "10.5281/zenodo.5869899", "license": "CC-BY-4.0", "links": [ @@ -164,7 +164,7 @@ ], "created": "2022-01-18 22:01:09.315638", "description": "Neuron segmentation in EM, trained on the CREMI challenge data.", - "download_count": 44912, + "download_count": 44913, "id": "10.5281/zenodo.5874741", "license": "CC-BY-4.0", "links": [ @@ -215,7 +215,7 @@ ], "created": "2023-07-26 10:47:44.642355", "description": "DeepImageJ compatible U-Net trained to segment phase contrast microscopy images of pancreatic stem cells on a 2D polystyrene substrate.", - "download_count": 42867, + "download_count": 42877, "id": "10.5281/zenodo.5914248", "license": "BSD-2-Clause", "links": [ @@ -266,7 +266,7 @@ ], "created": "2022-07-08 17:02:28.049385", "description": "Prediction enhancer for segmenting mitochondria in EM images.", - "download_count": 41712, + "download_count": 41787, "id": "10.5281/zenodo.6406756", "license": "CC-BY-4.0", "links": [ @@ -311,7 +311,7 @@ ], "created": "2022-06-10 06:22:28.465944", "description": "Mitochondria segmentation for electron microscopy.", - "download_count": 40461, + "download_count": 40463, "id": "10.5281/zenodo.5874841", "license": "CC-BY-4.0", "links": [ @@ -357,7 +357,7 @@ ], "created": "2022-01-21 14:50:48.356997", "description": "A 3D U-net to predict cell membranes in plant tissues, trained on volumes of Arabidopsis thaliana ovules acquired on a confocal microscope.", - "download_count": 40254, + "download_count": 40257, "id": "10.5281/zenodo.5749843", "license": "MIT", "links": [ @@ -404,7 +404,7 @@ ], "created": "2022-02-09 21:14:46.430029", "description": "{organelle} segmentation in EM of platynereis.", - "download_count": 39767, + "download_count": 39769, "id": "10.5281/zenodo.6028097", "license": "CC-BY-4.0", "links": [ @@ -453,7 +453,7 @@ ], "created": "2022-03-11 22:32:05.554959", "description": "StarDist - Object Detection with Star-convex Shapes", - "download_count": 39540, + "download_count": 39552, "id": "10.5281/zenodo.6348084", "license": "BSD-3-Clause", "links": [ @@ -504,7 +504,7 @@ ], "created": "2023-03-29 18:14:39.826271", "description": "This trained 2D U-Net model segments the contour, foreground and background of Bacillus Subtilis bacteria imaged with Widefield microscopy images. To obtain a unique label for each individual bacteria detected in the image one could run further watershed segmentation using the label 1 as the seed.", - "download_count": 38902, + "download_count": 38985, "id": "10.5281/zenodo.7261974", "license": "MIT", "links": [ @@ -561,7 +561,7 @@ ], "created": "2022-06-15 22:12:29.012734", "description": "Cell segmentation in EM of platynereis.", - "download_count": 37748, + "download_count": 37750, "id": "10.5281/zenodo.6028280", "license": "CC-BY-4.0", "links": [ @@ -604,7 +604,7 @@ ], "created": "2023-03-06 19:01:04.321374", "description": "Cell segmentation model for segmenting images from the Human Protein Atlas", - "download_count": 37026, + "download_count": 37047, "id": "10.5281/zenodo.6200635", "license": "CC-BY-4.0", "links": [ @@ -648,7 +648,7 @@ ], "created": "2023-03-24 17:08:34.402776", "description": "3D Unet trained on confocal images of Arabidopsis thaliana apical stem cell: https://www.repository.cam.ac.uk/handle/1810/262530. Voxel size: [0.25, 0.25, 0.25]", - "download_count": 36586, + "download_count": 36593, "id": "10.5281/zenodo.6346511", "license": "MIT", "links": [ @@ -697,7 +697,7 @@ ], "created": "2022-03-12 09:56:33.055323", "description": "Perform leaf segmentation in light microscopy images of Arabidopsis", - "download_count": 36539, + "download_count": 36544, "id": "10.5281/zenodo.6348728", "license": "MIT", "links": [ @@ -745,7 +745,7 @@ ], "created": "2022-01-27 14:00:17.489637", "description": "2D UNet trained using ZeroCostDL4Mic notebooks on data from ISBI Challenge for neuron segmentation in Transmission Electron Microscopy images.", - "download_count": 35857, + "download_count": 35860, "id": "10.5281/zenodo.5817052", "license": "MIT", "links": [ @@ -790,7 +790,7 @@ ], "created": "2022-06-15 22:08:13.874556", "description": "Cell segmentation for immunofluorescence microscopy.", - "download_count": 35403, + "download_count": 35407, "id": "10.5281/zenodo.5847355", "license": "CC-BY-4.0", "links": [ @@ -835,7 +835,7 @@ ], "created": "2022-04-01 16:06:28.519947", "description": "Segmentation of mitochondria in EM images.", - "download_count": 34738, + "download_count": 34748, "id": "10.5281/zenodo.6406803", "license": "CC-BY-4.0", "links": [ @@ -880,7 +880,7 @@ ], "created": "2023-03-02 05:53:45.695883", "description": "Nuclei segmentation model for segmenting images from the Human Protein Atlas", - "download_count": 33306, + "download_count": 33319, "id": "10.5281/zenodo.6200999", "license": "CC-BY-4.0", "links": [ @@ -923,7 +923,7 @@ ], "created": "2023-03-27 12:11:52.357154", "description": "A 3D U-Net trained to predict the cell boundaries in live light sheet images of developing mouse embryo. Voxel size: 0.2\u00d70.2\u00d71.0 \u00b5m^3", - "download_count": 31707, + "download_count": 31711, "id": "10.5281/zenodo.6384845", "license": "MIT", "links": [ @@ -976,7 +976,7 @@ ], "created": "2023-03-27 12:14:49.467153", "description": "A 3D U-Net trained to predict the nuclei and their boundaries in fixed confocal images of developing mouse embryo.Voxel size: (0.2\u00d70.2\u00d71 \u00b5m^3) (XYZ).", - "download_count": 30795, + "download_count": 30799, "id": "10.5281/zenodo.6383429", "license": "MIT", "links": [ @@ -1024,7 +1024,7 @@ ], "created": "2023-03-03 13:09:05.981223", "description": "affinity-model", - "download_count": 29496, + "download_count": 29502, "id": "10.5281/zenodo.6079314", "license": "CC-BY-4.0", "links": [ @@ -1072,7 +1072,7 @@ ], "created": "2023-04-06 10:47:26.453147", "description": "2D Unet trained on confocal images of Arabidopsis Ovules", - "download_count": 28111, + "download_count": 28121, "id": "10.5281/zenodo.6334383", "license": "MIT", "links": [ @@ -1121,7 +1121,7 @@ ], "created": "2023-03-23 21:42:30.250688", "description": "A 3D U-Net trained to predict the cell boundaries in lightsheet stacks of Arabidopsis Lateral Root Primordia. (0.25x0.1625x0.1625) microns ZYX", - "download_count": 25828, + "download_count": 25833, "id": "10.5281/zenodo.6334777", "license": "MIT", "links": [ @@ -1177,7 +1177,7 @@ ], "created": "2023-04-06 10:26:25.873589", "description": "2D Unet trained on z-slices of confocal images of Arabidopsis thaliana apical stem cells", - "download_count": 25778, + "download_count": 25795, "id": "10.5281/zenodo.6334881", "license": "MIT", "links": [ @@ -1221,7 +1221,7 @@ ], "created": "2022-05-11 12:52:23.766143", "description": "The winning model of HPA image classification 2021 by Bestfitting", - "download_count": 25450, + "download_count": 25456, "id": "10.5281/zenodo.5910854", "license": "MIT", "links": [ @@ -1267,7 +1267,7 @@ ], "created": "2023-04-06 12:43:33.436336", "description": "A 3d U-Net trained to predict the cell boundaries in confocal stacks of Arabidopsis ovules. Voxel size: (0.235, 0.150, 0.150) microns ZYX", - "download_count": 24211, + "download_count": 24219, "id": "10.5281/zenodo.6334583", "license": "MIT", "links": [ @@ -1318,7 +1318,7 @@ ], "created": "2022-07-08 14:35:48.861260", "description": "Prediction enhancer for segmenting mitochondria in EM images.", - "download_count": 23625, + "download_count": 23626, "id": "10.5281/zenodo.6811491", "license": "CC-BY-4.0", "links": [ @@ -1382,7 +1382,7 @@ ], "created": "2022-05-18 09:42:30.953891", "description": "DeepImageJ compatible fully residual U-Net trained to segment small extracellular vesicles in 2D TEM images", - "download_count": 23077, + "download_count": 23079, "download_url": "https://zenodo.org/api/records/6559475/files/deepimagej_fru-net_sev_segmentation.zip/content", "id": "10.5281/zenodo.6559474", "license": "BSD-3-Clause", @@ -1429,7 +1429,7 @@ ], "created": "2022-02-01 22:38:38.088910", "description": "The winning model of HPA image classification 2019 by Bestfitting", - "download_count": 21220, + "download_count": 21222, "id": "10.5281/zenodo.5910163", "license": "MIT", "links": [ @@ -1468,7 +1468,7 @@ ], "created": "2022-07-28 07:37:36.393648", "description": "DeepImageJ compatible FRUNet trained to subtly segment cells and gland.", - "download_count": 20771, + "download_count": 20779, "id": "10.5281/zenodo.6865412", "license": "CC-BY-4.0", "name": "Cells and gland Segmentation (FRUNet)", @@ -1503,7 +1503,7 @@ ], "created": "2023-07-07 10:12:51.478763", "description": "Cellular membrane prediction model for volume SEM datasets", - "download_count": 19166, + "download_count": 19182, "id": "10.5281/zenodo.7274275", "license": "CC-BY-4.0", "links": [ @@ -1549,7 +1549,7 @@ ], "created": "2022-07-07 21:30:58.116303", "description": "Prediction enhancer for segmenting cell boundaries in EM images.", - "download_count": 18717, + "download_count": 18719, "id": "10.5281/zenodo.6808325", "license": "CC-BY-4.0", "links": [ @@ -1611,7 +1611,7 @@ ], "created": "2022-11-12 12:53:32.701172", "description": "EmbryoNet Model by embryoNet Team", - "download_count": 13978, + "download_count": 13980, "id": "10.5281/zenodo.7315440", "license": "GPL-3.0", "links": [ @@ -1651,7 +1651,7 @@ ], "created": "2023-02-15 09:34:43.433531", "description": "HyLFM-Net trained on static images of arrested medaka hatchling hearts. The network reconstructs a volumentric image from a given light-field.", - "download_count": 12721, + "download_count": 12725, "id": "10.5281/zenodo.7614645", "license": "MIT", "links": [ @@ -1700,7 +1700,7 @@ ], "created": "2022-12-06 13:55:39.060882", "description": "For segmenting 2D projections of drosophila epithelia", - "download_count": 12694, + "download_count": 12697, "id": "10.5281/zenodo.7380171", "license": "CC-BY-4.0", "name": "Drosophila epithelia cell boundary segmentation of 2D projections", @@ -1740,7 +1740,7 @@ ], "created": "2023-03-29 11:10:26.329999", "description": "Unet trained on confocal images of Arabidopsis Ovules nuclei", - "download_count": 12466, + "download_count": 12471, "id": "10.5281/zenodo.7772662", "license": "MIT", "links": [ @@ -1790,7 +1790,7 @@ ], "created": "2023-03-30 16:57:43.433376", "description": "Wasserstein GAN (WGAN) trained for super-resolution of confocal scanning microscopy images of mitochondria in U2OS cells. Mitochondria were labelled with MitoTracker and the model was trained to upsample the images by a factor of 4.", - "download_count": 10144, + "download_count": 10145, "id": "10.5281/zenodo.7786492", "license": "MIT", "links": [ @@ -1837,7 +1837,7 @@ ], "created": "2023-10-11 17:13:48.737609", "description": "This widely applicable model is trained for 3D nuclei instance segmentation and with 3D nuclei images of Arabidopsis ovules with TO-PRO-3 stain. TO-PRO-3 nuclei stain detects double-stranded nucleic acids and hence can be a useful tool for nuclear DNA quantification and 3D volumetric nuclei extraction. This model is trained with dataset 1136, 1137, 1139, 1170 and validated with 1135.", - "download_count": 8494, + "download_count": 8499, "id": "10.5281/zenodo.8421755", "license": "CC-BY-4.0", "links": [ @@ -1884,7 +1884,7 @@ ], "created": "2023-06-23 10:23:37.255827", "description": "Label-free prediction of fluorescence images from brightield images", - "download_count": 6768, + "download_count": 6770, "id": "10.5281/zenodo.8064806", "license": "Apache-2.0", "links": [ @@ -1942,7 +1942,7 @@ ], "created": "2022-05-18 10:12:14.635800", "description": "DeepImageJ compatible fully residual U-Net trained to segment small extracellular vesicles in 2D TEM images", - "download_count": 6652, + "download_count": 6655, "download_url": "https://cbia.fi.muni.cz/files/segmentation/fru-net/FRU_processing.zip", "id": "10.5281/zenodo.6559929", "license": "MIT", @@ -1994,7 +1994,7 @@ ], "created": "2023-10-09 06:57:28.189519", "description": "Pre-training a Foundation Model for Universal Fluorescence Microscopy Image Restoration", - "download_count": 5795, + "download_count": 5799, "id": "10.5281/zenodo.8419845", "license": "CC-BY-4.0", "name": "UniFMIRSuperResolutionOnMicrotubules", @@ -2040,7 +2040,7 @@ ], "created": "2023-10-09 07:05:52.763368", "description": "Pre-training a Foundation Model for Universal Fluorescence Microscopy Image Restoration", - "download_count": 4495, + "download_count": 4499, "id": "10.5281/zenodo.8420099", "license": "CC-BY-4.0", "links": [ @@ -2081,7 +2081,7 @@ ], "created": "2023-10-11 00:39:40.958129", "description": "This widely applicable model is trained for 3D nuclei instance segmentation and with 3D nuclei images of Arabidopsis ovules with TO-PRO-3 stain. TO-PRO-3 nuclei stain detects double-stranded nucleic acids and hence can be a useful tool for nuclear DNA quantification and 3D volumetric nuclei extraction. This model is trained with dataset 1136, 1137, 1139, 1170 and validated with 1135. Patch size for this model during inference can be flexible.", - "download_count": 3530, + "download_count": 3533, "id": "10.5281/zenodo.8401064", "license": "CC-BY-4.0", "links": [ @@ -2128,7 +2128,7 @@ ], "created": "2023-07-21 09:09:49.349470", "description": "Prediction enhancer for segmenting cell boundaries in EM images.", - "download_count": 2491, + "download_count": 2495, "id": "10.5281/zenodo.8142283", "license": "MIT", "links": [ @@ -2167,7 +2167,7 @@ ], "created": "2023-02-06 13:30:05.714615", "description": "Light-sheet and light-field images of beating and arrested hatchling (8 dpf) medaka hearts used in \"Deep learning-enhanced light-field imaging with continuous validation\" to train and evaluate a HyLFM-Net.", - "download_count": 2347, + "download_count": 2348, "id": "10.5281/zenodo.7612115", "license": "MIT", "name": "Hatchling Medaka Heart (HyLFM)", diff --git a/rdf.yaml b/rdf.yaml index 70b817103..2e0433492 100644 --- a/rdf.yaml +++ b/rdf.yaml @@ -8,7 +8,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.5764892/6322939/cover.png'] created: '2022-06-15 22:06:22.658325' description: Nucleus segmentation for fluorescence microscopy - download_count: 69552 + download_count: 69743 id: 10.5281/zenodo.5764892 license: CC-BY-4.0 links: [ilastik/stardist_dsb_training_data, ilastik/ilastik, deepimagej/deepimagej, @@ -29,7 +29,7 @@ collection: 'https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6338614/6338615/example_histo.jpg'] created: '2022-03-08 18:36:28.378522' description: StarDist - Object Detection with Star-convex Shapes - download_count: 54339 + download_count: 54424 id: 10.5281/zenodo.6338614 license: BSD-3-Clause links: [deepimagej/deepimagej, imjoy/BioImageIO-Packager, ilastik/tnbc, bioimageio/stardist, @@ -49,7 +49,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.5869899/5869900/cover.png'] created: '2022-06-15 22:09:35.368273' description: Cell segmentation for phase-contrast microscopy. - download_count: 45677 + download_count: 45693 id: 10.5281/zenodo.5869899 license: CC-BY-4.0 links: [ilastik/livecell_dataset, ilastik/ilastik, deepimagej/deepimagej, imjoy/BioImageIO-Packager] @@ -68,7 +68,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.5874741/5874742/cover.png'] created: '2022-01-18 22:01:09.315638' description: Neuron segmentation in EM, trained on the CREMI challenge data. - download_count: 44912 + download_count: 44913 id: 10.5281/zenodo.5874741 license: CC-BY-4.0 links: [deepimagej/deepimagej, ilastik/ilastik, imjoy/BioImageIO-Packager, ilastik/torch-em-3d-unet-notebook] @@ -90,7 +90,7 @@ collection: created: '2023-07-26 10:47:44.642355' description: DeepImageJ compatible U-Net trained to segment phase contrast microscopy images of pancreatic stem cells on a 2D polystyrene substrate. - download_count: 42867 + download_count: 42877 id: 10.5281/zenodo.5914248 license: BSD-2-Clause links: [imjoy/BioImageIO-Packager, deepimagej/deepimagej, ilastik/ilastik, deepimagej/unet-pancreaticcellsegmentation, @@ -110,7 +110,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6406756/6406757/cover.png'] created: '2022-07-08 17:02:28.049385' description: Prediction enhancer for segmenting mitochondria in EM images. - download_count: 41712 + download_count: 41787 id: 10.5281/zenodo.6406756 license: CC-BY-4.0 links: [ilastik/torch-em-2d-unet-notebook, ilastik/ilastik, deepimagej/deepimagej, @@ -130,7 +130,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.5874841/5874842/cover.png'] created: '2022-06-10 06:22:28.465944' description: Mitochondria segmentation for electron microscopy. - download_count: 40461 + download_count: 40463 id: 10.5281/zenodo.5874841 license: CC-BY-4.0 links: [deepimagej/deepimagej, ilastik/ilastik, ilastik/mitoem_segmentation_challenge, @@ -151,7 +151,7 @@ collection: created: '2022-01-21 14:50:48.356997' description: A 3D U-net to predict cell membranes in plant tissues, trained on volumes of Arabidopsis thaliana ovules acquired on a confocal microscope. - download_count: 40254 + download_count: 40257 id: 10.5281/zenodo.5749843 license: MIT links: [imjoy/BioImageIO-Packager, ilastik/ilastik, deepimagej/deepimagej, zero/notebook_u-net_3d_zerocostdl4mic] @@ -170,7 +170,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6028097/6028098/cover.png'] created: '2022-02-09 21:14:46.430029' description: '{organelle} segmentation in EM of platynereis.' - download_count: 39767 + download_count: 39769 id: 10.5281/zenodo.6028097 license: CC-BY-4.0 links: [deepimagej/deepimagej, ilastik/ilastik, imjoy/BioImageIO-Packager, ilastik/torch-em-3d-unet-notebook] @@ -190,7 +190,7 @@ collection: 'https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6348084/6348085/example_fluo.jpg'] created: '2022-03-11 22:32:05.554959' description: StarDist - Object Detection with Star-convex Shapes - download_count: 39540 + download_count: 39552 id: 10.5281/zenodo.6348084 license: BSD-3-Clause links: [deepimagej/deepimagej, imjoy/BioImageIO-Packager, bioimageio/stardist, bioimageio/qupath] @@ -213,7 +213,7 @@ collection: of Bacillus Subtilis bacteria imaged with Widefield microscopy images. To obtain a unique label for each individual bacteria detected in the image one could run further watershed segmentation using the label 1 as the seed. - download_count: 38902 + download_count: 38985 id: 10.5281/zenodo.7261974 license: MIT links: [deepimagej/deepimagej, imjoy/BioImageIO-Packager, zero/dataset_u-net_2d_multilabel_deepbacs, @@ -235,7 +235,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6028280/6028281/cover.png'] created: '2022-06-15 22:12:29.012734' description: Cell segmentation in EM of platynereis. - download_count: 37748 + download_count: 37750 id: 10.5281/zenodo.6028280 license: CC-BY-4.0 links: [deepimagej/deepimagej, ilastik/platynereis_em_training_data, ilastik/ilastik, @@ -255,7 +255,7 @@ collection: created: '2023-03-06 19:01:04.321374' description: Cell segmentation model for segmenting images from the Human Protein Atlas - download_count: 37026 + download_count: 37047 id: 10.5281/zenodo.6200635 license: CC-BY-4.0 links: [deepimagej/deepimagej, hpa/hpa-cell-image-segmentation-dataset, imjoy/BioImageIO-Packager] @@ -276,7 +276,7 @@ collection: description: '3D Unet trained on confocal images of Arabidopsis thaliana apical stem cell: https://www.repository.cam.ac.uk/handle/1810/262530. Voxel size: [0.25, 0.25, 0.25]' - download_count: 36586 + download_count: 36593 id: 10.5281/zenodo.6346511 license: MIT links: [deepimagej/deepimagej, imjoy/BioImageIO-Packager] @@ -294,7 +294,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6348728/6348729/cover.png'] created: '2022-03-12 09:56:33.055323' description: Perform leaf segmentation in light microscopy images of Arabidopsis - download_count: 36539 + download_count: 36544 id: 10.5281/zenodo.6348728 license: MIT links: [deepimagej/deepimagej, imjoy/BioImageIO-Packager, ilastik/ilastik, zero/notebook_u-net_3d_zerocostdl4mic] @@ -315,7 +315,7 @@ collection: created: '2022-01-27 14:00:17.489637' description: 2D UNet trained using ZeroCostDL4Mic notebooks on data from ISBI Challenge for neuron segmentation in Transmission Electron Microscopy images. - download_count: 35857 + download_count: 35860 id: 10.5281/zenodo.5817052 license: MIT links: [imjoy/BioImageIO-Packager, zero/notebook_u-net_2d_zerocostdl4mic_deepimagej, @@ -334,7 +334,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.5847355/6322908/cover.png'] created: '2022-06-15 22:08:13.874556' description: Cell segmentation for immunofluorescence microscopy. - download_count: 35403 + download_count: 35407 id: 10.5281/zenodo.5847355 license: CC-BY-4.0 links: [ilastik/covid_if_training_data, ilastik/ilastik, deepimagej/deepimagej, @@ -354,7 +354,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6406803/6406804/cover.png'] created: '2022-04-01 16:06:28.519947' description: Segmentation of mitochondria in EM images. - download_count: 34738 + download_count: 34748 id: 10.5281/zenodo.6406803 license: CC-BY-4.0 links: [deepimagej/deepimagej, ilastik/ilastik, imjoy/BioImageIO-Packager, ilastik/torch-em-2d-unet-notebook] @@ -374,7 +374,7 @@ collection: created: '2023-03-02 05:53:45.695883' description: Nuclei segmentation model for segmenting images from the Human Protein Atlas - download_count: 33306 + download_count: 33319 id: 10.5281/zenodo.6200999 license: CC-BY-4.0 links: [deepimagej/deepimagej] @@ -394,7 +394,7 @@ collection: created: '2023-03-27 12:11:52.357154' description: 'A 3D U-Net trained to predict the cell boundaries in live light sheet images of developing mouse embryo. Voxel size: 0.2×0.2×1.0 µm^3' - download_count: 31707 + download_count: 31711 id: 10.5281/zenodo.6384845 license: MIT links: [deepimagej/deepimagej, imjoy/BioImageIO-Packager] @@ -416,7 +416,7 @@ collection: created: '2023-03-27 12:14:49.467153' description: 'A 3D U-Net trained to predict the nuclei and their boundaries in fixed confocal images of developing mouse embryo.Voxel size: (0.2×0.2×1 µm^3) (XYZ).' - download_count: 30795 + download_count: 30799 id: 10.5281/zenodo.6383429 license: MIT links: [deepimagej/deepimagej, imjoy/BioImageIO-Packager] @@ -434,7 +434,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6079314/6079315/cover.png'] created: '2023-03-03 13:09:05.981223' description: affinity-model - download_count: 29496 + download_count: 29502 id: 10.5281/zenodo.6079314 license: CC-BY-4.0 links: [imjoy/BioImageIO-Packager, ilastik/torch-em-2d-unet-notebook, ilastik/ilastik, @@ -453,7 +453,7 @@ collection: 'https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6334383/6334384/pred.png'] created: '2023-04-06 10:47:26.453147' description: 2D Unet trained on confocal images of Arabidopsis Ovules - download_count: 28111 + download_count: 28121 id: 10.5281/zenodo.6334383 license: MIT links: [imjoy/BioImageIO-Packager] @@ -474,7 +474,7 @@ collection: created: '2023-03-23 21:42:30.250688' description: A 3D U-Net trained to predict the cell boundaries in lightsheet stacks of Arabidopsis Lateral Root Primordia. (0.25x0.1625x0.1625) microns ZYX - download_count: 25828 + download_count: 25833 id: 10.5281/zenodo.6334777 license: MIT links: [deepimagej/deepimagej, imjoy/BioImageIO-Packager] @@ -496,7 +496,7 @@ collection: created: '2023-04-06 10:26:25.873589' description: 2D Unet trained on z-slices of confocal images of Arabidopsis thaliana apical stem cells - download_count: 25778 + download_count: 25795 id: 10.5281/zenodo.6334881 license: MIT links: [imjoy/BioImageIO-Packager] @@ -514,7 +514,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.5910854/5911832/diagram-of-InceptionV3.png'] created: '2022-05-11 12:52:23.766143' description: The winning model of HPA image classification 2021 by Bestfitting - download_count: 25450 + download_count: 25456 id: 10.5281/zenodo.5910854 license: MIT links: [imjoy/BioImageIO-Packager, hpa/hpa-kaggle-2021-dataset] @@ -535,7 +535,7 @@ collection: created: '2023-04-06 12:43:33.436336' description: 'A 3d U-Net trained to predict the cell boundaries in confocal stacks of Arabidopsis ovules. Voxel size: (0.235, 0.150, 0.150) microns ZYX' - download_count: 24211 + download_count: 24219 id: 10.5281/zenodo.6334583 license: MIT links: [imjoy/BioImageIO-Packager] @@ -553,7 +553,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6811491/6811492/cover.png'] created: '2022-07-08 14:35:48.861260' description: Prediction enhancer for segmenting mitochondria in EM images. - download_count: 23625 + download_count: 23626 id: 10.5281/zenodo.6811491 license: CC-BY-4.0 links: [deepimagej/deepimagej, ilastik/torch-em-3d-unet-notebook, ilastik/ilastik, @@ -579,7 +579,7 @@ collection: created: '2022-05-18 09:42:30.953891' description: DeepImageJ compatible fully residual U-Net trained to segment small extracellular vesicles in 2D TEM images - download_count: 23077 + download_count: 23079 download_url: https://zenodo.org/api/records/6559475/files/deepimagej_fru-net_sev_segmentation.zip/content id: 10.5281/zenodo.6559474 license: BSD-3-Clause @@ -599,7 +599,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.5910163/5942853/bestfitting-densenet-diagram.png'] created: '2022-02-01 22:38:38.088910' description: The winning model of HPA image classification 2019 by Bestfitting - download_count: 21220 + download_count: 21222 id: 10.5281/zenodo.5910163 license: MIT links: [imjoy/BioImageIO-Packager] @@ -617,7 +617,7 @@ collection: 'https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6865412/6919253/lable.png'] created: '2022-07-28 07:37:36.393648' description: DeepImageJ compatible FRUNet trained to subtly segment cells and gland. - download_count: 20771 + download_count: 20779 id: 10.5281/zenodo.6865412 license: CC-BY-4.0 name: Cells and gland Segmentation (FRUNet) @@ -633,7 +633,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.7274275/7274276/coverimage.jpg'] created: '2023-07-07 10:12:51.478763' description: Cellular membrane prediction model for volume SEM datasets - download_count: 19166 + download_count: 19182 id: 10.5281/zenodo.7274275 license: CC-BY-4.0 links: [deepimagej/deepimagej] @@ -651,7 +651,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.6808325/6808413/cover.png'] created: '2022-07-07 21:30:58.116303' description: Prediction enhancer for segmenting cell boundaries in EM images. - download_count: 18717 + download_count: 18719 id: 10.5281/zenodo.6808325 license: CC-BY-4.0 links: [ilastik/ilastik, deepimagej/deepimagej, ilastik/torch-em-3d-unet-notebook, @@ -675,7 +675,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.7315440/7315441/phenotypes_features.png'] created: '2022-11-12 12:53:32.701172' description: EmbryoNet Model by embryoNet Team - download_count: 13978 + download_count: 13980 id: 10.5281/zenodo.7315440 license: GPL-3.0 links: [Embryonet.de, imjoy/BioImageIO-Packager] @@ -693,7 +693,7 @@ collection: created: '2023-02-15 09:34:43.433531' description: HyLFM-Net trained on static images of arrested medaka hatchling hearts. The network reconstructs a volumentric image from a given light-field. - download_count: 12721 + download_count: 12725 id: 10.5281/zenodo.7614645 license: MIT links: [imjoy/BioImageIO-Packager] @@ -715,7 +715,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.7380171/7405349/cover.png'] created: '2022-12-06 13:55:39.060882' description: For segmenting 2D projections of drosophila epithelia - download_count: 12694 + download_count: 12697 id: 10.5281/zenodo.7380171 license: CC-BY-4.0 name: Drosophila epithelia cell boundary segmentation of 2D projections @@ -734,7 +734,7 @@ collection: 'https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.7772662/7781091/pmaps.png'] created: '2023-03-29 11:10:26.329999' description: Unet trained on confocal images of Arabidopsis Ovules nuclei - download_count: 12466 + download_count: 12471 id: 10.5281/zenodo.7772662 license: MIT links: [imjoy/BioImageIO-Packager] @@ -756,7 +756,7 @@ collection: description: Wasserstein GAN (WGAN) trained for super-resolution of confocal scanning microscopy images of mitochondria in U2OS cells. Mitochondria were labelled with MitoTracker and the model was trained to upsample the images by a factor of 4. - download_count: 10144 + download_count: 10145 id: 10.5281/zenodo.7786492 license: MIT links: [deepimagej/deepimagej, imjoy/BioImageIO-Packager] @@ -781,7 +781,7 @@ collection: nuclei stain detects double-stranded nucleic acids and hence can be a useful tool for nuclear DNA quantification and 3D volumetric nuclei extraction. This model is trained with dataset 1136, 1137, 1139, 1170 and validated with 1135. - download_count: 8494 + download_count: 8499 id: 10.5281/zenodo.8421755 license: CC-BY-4.0 links: [imjoy/BioImageIO-Packager] @@ -800,7 +800,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.8064806/8073617/cover.png'] created: '2023-06-23 10:23:37.255827' description: Label-free prediction of fluorescence images from brightield images - download_count: 6768 + download_count: 6770 id: 10.5281/zenodo.8064806 license: Apache-2.0 links: [imjoy/BioImageIO-Packager] @@ -823,7 +823,7 @@ collection: created: '2022-05-18 10:12:14.635800' description: DeepImageJ compatible fully residual U-Net trained to segment small extracellular vesicles in 2D TEM images - download_count: 6652 + download_count: 6655 download_url: https://cbia.fi.muni.cz/files/segmentation/fru-net/FRU_processing.zip id: 10.5281/zenodo.6559929 license: MIT @@ -846,7 +846,7 @@ collection: created: '2023-10-09 06:57:28.189519' description: Pre-training a Foundation Model for Universal Fluorescence Microscopy Image Restoration - download_count: 5795 + download_count: 5799 id: 10.5281/zenodo.8419845 license: CC-BY-4.0 name: UniFMIRSuperResolutionOnMicrotubules @@ -867,7 +867,7 @@ collection: created: '2023-10-09 07:05:52.763368' description: Pre-training a Foundation Model for Universal Fluorescence Microscopy Image Restoration - download_count: 4495 + download_count: 4499 id: 10.5281/zenodo.8420099 license: CC-BY-4.0 links: [imjoy/BioImageIO-Packager] @@ -892,7 +892,7 @@ collection: for nuclear DNA quantification and 3D volumetric nuclei extraction. This model is trained with dataset 1136, 1137, 1139, 1170 and validated with 1135. Patch size for this model during inference can be flexible. - download_count: 3530 + download_count: 3533 id: 10.5281/zenodo.8401064 license: CC-BY-4.0 links: [imjoy/BioImageIO-Packager] @@ -910,7 +910,7 @@ collection: covers: ['https://bioimage-io.github.io/collection-bioimage-io/rdfs/10.5281/zenodo.8142283/8171247/cover.png'] created: '2023-07-21 09:09:49.349470' description: Prediction enhancer for segmenting cell boundaries in EM images. - download_count: 2491 + download_count: 2495 id: 10.5281/zenodo.8142283 license: MIT links: [imjoy/BioImageIO-Packager] @@ -929,7 +929,7 @@ collection: description: Light-sheet and light-field images of beating and arrested hatchling (8 dpf) medaka hearts used in "Deep learning-enhanced light-field imaging with continuous validation" to train and evaluate a HyLFM-Net. - download_count: 2347 + download_count: 2348 id: 10.5281/zenodo.7612115 license: MIT name: Hatchling Medaka Heart (HyLFM)