-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathmultipleWindows_playeMOUSEEVENT.py
135 lines (103 loc) · 3.95 KB
/
multipleWindows_playeMOUSEEVENT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import numpy as np
import cv2
from time import time
boxes = []
def on_mouse(event, x, y, flags, params):
# global img
t = time()
if event == cv2.cv.CV_EVENT_LBUTTONDBLCLK:
print 'Start Mouse Position: '+str(x)+', '+str(y)
sbox = [x, y]
boxes.append(sbox)
# print count
# print sbox
elif event == cv2.cv.CV_EVENT_MBUTTONDBLCLK:
print 'End Mouse Position: '+str(x)+', '+str(y)
ebox = [x, y]
boxes.append(ebox)
print boxes
crop = img[boxes[-2][1]:boxes[-1][1],boxes[-2][0]:boxes[-1][0]]
cv2.imshow('crop',crop)
k = cv2.waitKey(0)
if ord('r')== k:
cv2.imwrite('Crop'+str(t)+'.jpg',crop)
print "Written to file"
count = 0
while(1):
count += 1
img = cv2.imread('FIRST_FRAME.PNG',1)
# img = cv2.blur(img, (3,3))
# img = cv2.resize(img, None, fx = 0.25,fy = 0.25)
cv2.namedWindow('real image')
cv2.cv.SetMouseCallback('real image', on_mouse, 0)
cv2.imshow('real image', img)
if count < 50:
if cv2.waitKey(33) == 27:
cv2.destroyAllWindows()
break
elif count >= 50:
if cv2.waitKey(0) == 27:
cv2.destroyAllWindows()
break
count = 0
cap = cv2.VideoCapture('videofu.avi')
# take first frame of the video
ret,frame = cap.read()
# setup initial location of window
r,h,c,w = boxes[0][1],boxes[1][1]-boxes[0][1],boxes[0][0],boxes[1][0]-boxes[0][0] # simply hardcoded the values player2
#row, hight of the window, col, width of the window
#ddddd = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
ddddd = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
for i in range(boxes[0][1],boxes[1][1]):
for j in range(boxes[0][0],boxes[1][0]):
print i," ",j," ",ddddd[i,j,:]
meann= np.mean(ddddd[boxes[0][1]:boxes[1][1],boxes[0][0]:boxes[1][0],0])
stddeviation = np.std(ddddd[boxes[0][1]:boxes[1][1],boxes[0][0]:boxes[1][0],0])
meann2= np.mean(ddddd[boxes[0][1]:boxes[1][1],boxes[0][0]:boxes[1][0],1])
stddeviation2 = np.std(ddddd[boxes[0][1]:boxes[1][1],boxes[0][0]:boxes[1][0],1])
meann3= np.mean(ddddd[boxes[0][1]:boxes[1][1],boxes[0][0]:boxes[1][0],2])
stddeviation3 = np.std(ddddd[boxes[0][1]:boxes[1][1],boxes[0][0]:boxes[1][0],2])
track_window = (c,r,w,h)
# set up the ROI for tracking
roi = frame[r:r+h, c:c+w]
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
#asdroi = frame[r:r+h, c:c+w]
#asdsd_roi = cv2.cvtColor(asdroi, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((meann-stddeviation, meann2-stddeviation2,meann3-stddeviation3)), np.array((meann+stddeviation,meann2+stddeviation2,meann3+stddeviation3)))
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)
# Setup the termination criteria, either 10 iteration or move by atleast 1 pt
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 100, 1 )
count=0
while(cap.isOpened()):
ret ,frame = cap.read()
count+=1
if ret == True:
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)
# apply meanshift to get the new location
ret, track_window = cv2.meanShift(dst, track_window, term_crit)
# Draw it on image
x,y,w,h = track_window
cv2.rectangle(frame, (x,y), (x+w,y+h), 255,2)
# box = cv2.cv.BoxPoints(rect)
# box = np.int0(box)
# print ('x = ', x+w/2)
# print ('y = ', y+h/2)
# Draw it on image
# pts = cv2.boxPoints(ret)
# pts = np.int0(pts)
# img2 = cv2.polylines(frame,[pts],True, 255,2)
cv2.namedWindow('frame', cv2.WINDOW_OPENGL)
cv2.imshow('frame',frame)
k = cv2.waitKey(60) & 0xff
if count==1:
cv2.imwrite("fffaaaa.jpg",frame)
if k == 27:
break
# else:
# cv2.imwrite(chr(k)+".jpg",img2)
else:
break
cv2.destroyAllWindows()
cap.release()