-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest.py
291 lines (241 loc) · 10.1 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# -*- coding:utf-8 -*-
import argparse
from collections import OrderedDict
from pathlib import Path
import os
import numpy as np
import torch
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
from citylearn import CityLearn
from agent import RL_Agents
from utils.io import get_output_folder
from utils.standardization import normalize_state
from reward_function import reward_function
parser = argparse.ArgumentParser()
# RL Hyper-parameters
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--MAX_BUFFER', type=int, default=10000)
parser.add_argument('--seed', '-s', type=int, default=0)
parser.add_argument('--BATCH_SIZE', type=int, default=32)
parser.add_argument('--climate_zone', type=int, default=1)
parser.add_argument('--act_limit', type=float, default=0.5)
parser.add_argument('--decay', type=float, default=1)
# TCN Hyper-parameters
parser.add_argument('--encode_dim', type=int, default=64)
parser.add_argument('--num_layers', type=int, default=1)
parser.add_argument('--alpha', type=float, default=0.2)
parser.add_argument('--kernel_size', type=int, default=3)
parser.add_argument('--kernel_size_forecast', type=int, default=3)
parser.add_argument('--levels', type=int, default=5)
parser.add_argument('--levels_forecast', type=int, default=3)
parser.add_argument('--seq_len', type=int, default=24)
parser.add_argument('--seq_len_forecast', type=int, default=6)
parser.add_argument('--episode_len', type=int, default=168)
# reward Hyper-parameters
parser.add_argument('--A_r', type=float, default=0)
parser.add_argument('--B_r', type=float, default=1)
parser.add_argument('--window_len_A', type=int, default=6)
parser.add_argument('--window_len_B', type=int, default=12)
parser.add_argument('--price_factor', type=float, default=0.01)
# logger
parser.add_argument('--print_per_step', type=int, default=250)
# load model
parser.add_argument('--continue_flag', type=int, default=1)
parser.add_argument('--load_episode', type=int, default=295)
# training length
parser.add_argument('--MaxEpisode', type=int, default=100000)
parser.add_argument('--save_per_episode', type=int, default=500)
parser.add_argument('--train', dest='train', default=True, action='store_true')
parser.add_argument('--eval', dest='train', action='store_false')
parser.add_argument('--suffix', type=str, default="")
args = parser.parse_args()
reward_kwargs = OrderedDict(
alpha=args.A_r,
beta=args.B_r,
total_energy_window=args.window_len_A,
heat_energy_window=args.window_len_B,
price_factor=args.price_factor,
ramping_window=6
)
full_dim = 33
src_dim = 21
pred_dim = 4
latent_dim = 3
act_dim = 2
# Load Model using args dict
def get_agent_kwargs(args, log_path, train=None):
# Lazy Import
from model.BaseModules import ActionClipping
from model.Encoder import ROMAEncoder, ROMALSTMEncoder
from model.RLModules import DualHyperQNet, SGHNActor, MLP
encode_dim = args.encode_dim
encoder_kwargs = (ROMAEncoder,
OrderedDict( # for ROMAEncoder
input_size=33,
output_size=encode_dim,
role_size=latent_dim,
rnn_kwarg=OrderedDict(num_layers=args.num_layers))
)
model_kwargs = OrderedDict(
Encoder=encoder_kwargs,
DualCritic=(DualHyperQNet,
OrderedDict(input_size=encode_dim, latent_size=latent_dim,
action_size=act_dim)),
Actor=(SGHNActor,
OrderedDict(input_size=encode_dim, output_size=act_dim, latent_size=latent_dim)),
DisparityNet=(MLP,
OrderedDict(input_size=latent_dim * 2, output_size=1, layer_sizes=[encode_dim],
norm_layer=nn.BatchNorm1d, activation=nn.LeakyReLU())),
)
default_lr = args.lr
action_clip_kwargs = OrderedDict(
start_bound=args.act_limit,
stop_bound=.1,
decay=args.decay,
step_size=20000,
warm_up=0,
verbose=True
)
# print("act limit:", action_clip_kwargs['start_bound)
if train is None:
train = args.train
if not train:
algo_kwargs = None
print("eval mode, use deterministic policy")
else:
unique_optim_kwargs = OrderedDict(
Encoder=OrderedDict(),
DualCritic=OrderedDict(),
Actor=OrderedDict()
)
algo_kwargs = OrderedDict(
batch_size=args.BATCH_SIZE,
alpha=args.alpha,
buffer_capacity=args.MAX_BUFFER,
optim_cls=torch.optim.Adam,
optim_kwargs=OrderedDict(lr=default_lr, betas=(0.9, 0.999), eps=1e-8, weight_decay=0),
unique_optim_kwargs=unique_optim_kwargs,
verbose=True,
log_interval=args.print_per_step,
log_path=log_path
)
ac_kwargs = dict(
model_kwargs=model_kwargs,
algo_kwargs=algo_kwargs,
# state_fn=lambda s: normalize_seq2seq_state_forRL(s, future_len=args.seq_len_forecast),
state_fn=normalize_state,
# No reward_fn for Hierarchical Agents # TODO Compatibility with original agent
reward_fn=None,
action_clipping=lambda model: ActionClipping(model, **action_clip_kwargs),
memory_size=args.seq_len
)
return ac_kwargs
filename = "zone_" + str(args.climate_zone) + \
"_lr" + str(args.lr) + \
"_predLen_" + str(args.seq_len_forecast) + \
"_actlimit" + str(args.act_limit) + \
"_num_layers_" + str(args.num_layers) + \
"_encode_" + str(args.encode_dim) + \
"_episodeLen_" + str(args.episode_len) + \
"_seqLen_" + str(args.seq_len) + \
"_decay_" + str(args.decay) + \
"_" + str(args.suffix)
# Instantiating the Tensorboard writers
PATH_base = 'test/'
PATH_base = get_output_folder(PATH_base, 'scalar_' + filename)
# for eval stage
reward_writer = SummaryWriter(PATH_base + '/reward')
cost_writer = SummaryWriter(PATH_base + '/cost')
act_writer = SummaryWriter(PATH_base + '/act')
soc_writer = SummaryWriter(PATH_base + '/soc')
# load data
data_path = Path("../data/Climate_Zone_" + str(args.climate_zone))
building_attributes = data_path / 'building_attributes.json'
weather_file = data_path / 'weather_data.csv'
solar_profile = data_path / 'solar_generation_1kW.csv'
building_state_actions = 'buildings_state_action_space.json'
building_ids = ["Building_1", "Building_2", "Building_3", "Building_4", "Building_5", "Building_6", "Building_7",
"Building_8", "Building_9"]
objective_function = ['ramping', '1-load_factor', 'average_daily_peak', 'peak_demand',
'net_electricity_consumption', 'total']
# Alias
Env = CityLearn
# Instantiating the env
env = Env(data_path, building_attributes, weather_file, solar_profile, building_ids,
buildings_states_actions=building_state_actions, cost_function=objective_function)
observations_spaces, actions_spaces = env.get_state_action_spaces()
# Provides information on Building type, Climate Zone, Annual DHW demand, Annual Cooling Demand,
# Annual Electricity Demand, Solar Capacity, and correllations among buildings
building_info = env.get_building_information()
# Select many episodes for training. In the final run we will set this value to 1 (the buildings run for one year)
start_episode = 0
ac_kwargs = get_agent_kwargs(args, PATH_base)
# rl_agents = RL_Agents(building_info, observations_spaces, actions_spaces, ac_kwargs)
# initialize the model
best_model_path = "./Models_best_zone" + str(args.climate_zone)
model_path = './Models_' + filename
if not os.path.isdir(model_path):
os.mkdir(model_path)
env_kwargs = dict(
data_path=data_path,
building_attributes=building_attributes,
weather_file=weather_file,
solar_profile=solar_profile,
building_ids=building_ids,
buildings_states_actions=building_state_actions,
cost_function=objective_function
)
reward_fn = reward_function
MaxEpisode = args.MaxEpisode
def print_grad(model):
for name, param in model.named_parameters():
if param.requires_grad:
print(name, param)
def print_weight(model):
print(list(model.parameters()))
def test(model_path, e):
print("===============test stage start================")
# test_ac_kwargs = get_agent_kwargs(args, PATH_base, train=False)
# test_agents = RL_Agents(building_info, observations_spaces, actions_spaces, test_ac_kwargs)
# print("testing: Load model from episode {}.".format(e))
# print("load path:{}".format(model_path))
# test_agents.agent.load_models(model_path, e)
# print_grad(test_agents.agent.actor)
# return
env = CityLearn(**env_kwargs)
state = env.reset()
# test_agents.agent.reset()
done = False
k = 0
# cum_reward = {}
# for id in range(test_agents.n_buildings):
# cum_reward[id] = 0
cost = {}
while not done:
with torch.no_grad():
# action = test_agents.select_action(state)
action = np.zeros((9, 2))
next_state, raw_reward, done, _ = env.step(action)
state = next_state
if k % 1 == 0:
print("testing time step:{}, write rewards".format(k))
for id in range(9):
# cum_reward[id] += raw_reward[id]
reward_writer.add_scalar('building_reward_' + str(id), raw_reward[id], k)
# act_writer.add_scalar('act1_' + str(id), action[id][0], k)
# act_writer.add_scalar('act2_' + str(id), action[id][1], k)
# soc_writer.add_scalar('soc1_' + str(id), state[id][-2], k)
# soc_writer.add_scalar('soc2_' + str(id), state[id][-1], k)
k += 1
exit()
# write episode-accumulated reward
# for r in range(test_agents.n_buildings):
# reward_writer.add_scalar('building_cum_reward_' + str(r), cum_reward[r], 0)
# write cost
cost[e] = env.cost()
print("cost_writer adding scalar")
for i in range(len(objective_function)):
cost_writer.add_scalar(str("cost_") + objective_function[i], cost[e][objective_function[i]], 0)
cost_writer.flush()
test(model_path, args.load_episode)