-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathrun.py
executable file
·159 lines (139 loc) · 4.58 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#!/usr/bin/env python3
import argparse
import os
import subprocess
import sys
from glob import glob
from pathlib import Path
import nibabel
import numpy
__version__ = open(Path(__file__).parent / "version").read()
def run(command, env=None):
if env is None:
env = {}
merged_env = os.environ
merged_env.update(env)
process = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
shell=True,
env=merged_env,
)
while True:
line = process.stdout.readline()
line = str(line, "utf-8")[:-1]
print(line)
if line == "" and process.poll() != None:
break
if process.returncode != 0:
raise Exception("Non zero return code: %d" % process.returncode)
def return_parser():
parser = argparse.ArgumentParser(
description="Example BIDS App entrypoint script."
)
parser.add_argument(
"bids_dir",
help="The directory with the input dataset formatted according to the BIDS standard.",
)
parser.add_argument(
"output_dir",
help="""
The directory where the output files should be stored.
If you are running group level analysis this folder should be prepopulated
with the results of the participant level analysis.""",
)
parser.add_argument(
"analysis_level",
help="""
Level of the analysis that will be performed.
Multiple participant level analyses can be run independently
in parallel) using the same output_dir.""",
choices=["participant", "group"],
)
parser.add_argument(
"--participant_label",
help="""
The label(s) of the participant(s) that should be analyzed.
The label corresponds to sub-<participant_label> from the BIDS spec
(so it does not include "sub-"). If this parameter is not provided all subjects should be analyzed.
Multiple participants can be specified with a space separated list.""",
nargs="+",
)
parser.add_argument(
"--skip_bids_validator",
help="Whether or not to perform BIDS dataset validation.",
action="store_true",
)
parser.add_argument(
"-v",
"--version",
action="version",
version=f"BIDS-App example version {__version__}",
)
return parser
def main(argv=sys.argv):
parser = return_parser()
args, unknowns = parser.parse_known_args(argv[1:])
if unknowns:
print(f"The following arguments are unknown: {unknowns}")
exit(64)
if not args.skip_bids_validator:
run(f"bids-validator {args.bids_dir}")
subjects_to_analyze = []
# only for a subset of subjects
if args.participant_label:
subjects_to_analyze = args.participant_label
# for all subjects
else:
subject_dirs = glob(os.path.join(args.bids_dir, "sub-*"))
subjects_to_analyze = [
subject_dir.split("-")[-1] for subject_dir in subject_dirs
]
# running participant level
if args.analysis_level == "participant":
# find all T1s and skullstrip them
for subject_label in subjects_to_analyze:
for T1_file in glob(
os.path.join(
args.bids_dir, f"sub-{subject_label}", "anat", "*_T1w.nii*"
)
) + glob(
os.path.join(
args.bids_dir,
f"sub-{subject_label}",
"ses-*",
"anat",
"*_T1w.nii*",
)
):
out_file = os.path.split(T1_file)[-1].replace(
"_T1w.", "_brain."
)
cmd = (
f"bet {T1_file} {os.path.join(args.output_dir, out_file)}"
)
print(cmd)
run(cmd)
exit(0)
elif args.analysis_level == "group":
brain_sizes = []
for subject_label in subjects_to_analyze:
for brain_file in glob(
os.path.join(args.output_dir, f"sub-{subject_label}*.nii*")
):
data = nibabel.load(brain_file).get_fdata()
# calculate average mask size in voxels
brain_sizes.append((data != 0).sum())
with open(
os.path.join(args.output_dir, "avg_brain_size.txt"), "w"
) as fp:
fp.write(
f"Average brain size is {numpy.array(brain_sizes).mean()} voxels"
)
print(
f"Results were saved in {Path(args.output_dir) / 'avg_brain_size.txt'}"
)
exit(0)
if __name__ == "__main__":
main()