forked from chenxin061/pdarts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_search.py
468 lines (428 loc) · 18.6 KB
/
train_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import os
import sys
import time
import glob
import numpy as np
import torch
import utils
import logging
import argparse
import torch.nn as nn
import torch.utils
import torch.nn.functional as F
import torchvision.datasets as dset
import torch.backends.cudnn as cudnn
import copy
from model_search import Network
from genotypes import PRIMITIVES
from genotypes import Genotype
parser = argparse.ArgumentParser("cifar")
parser.add_argument('--workers', type=int, default=2, help='number of workers to load dataset')
parser.add_argument('--batch_size', type=int, default=96, help='batch size')
parser.add_argument('--learning_rate', type=float, default=0.025, help='init learning rate')
parser.add_argument('--learning_rate_min', type=float, default=0.0, help='min learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=3e-4, help='weight decay')
parser.add_argument('--report_freq', type=float, default=50, help='report frequency')
parser.add_argument('--epochs', type=int, default=25, help='num of training epochs')
parser.add_argument('--init_channels', type=int, default=16, help='num of init channels')
parser.add_argument('--layers', type=int, default=5, help='total number of layers')
parser.add_argument('--cutout', action='store_true', default=False, help='use cutout')
parser.add_argument('--cutout_length', type=int, default=16, help='cutout length')
parser.add_argument('--drop_path_prob', type=float, default=0.3, help='drop path probability')
parser.add_argument('--save', type=str, default='/tmp/checkpoints/', help='experiment path')
parser.add_argument('--seed', type=int, default=2, help='random seed')
parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping')
parser.add_argument('--train_portion', type=float, default=0.5, help='portion of training data')
parser.add_argument('--arch_learning_rate', type=float, default=6e-4, help='learning rate for arch encoding')
parser.add_argument('--arch_weight_decay', type=float, default=1e-3, help='weight decay for arch encoding')
parser.add_argument('--tmp_data_dir', type=str, default='/tmp/cache/', help='temp data dir')
parser.add_argument('--note', type=str, default='try', help='note for this run')
parser.add_argument('--dropout_rate', action='append', default=[], help='dropout rate of skip connect')
parser.add_argument('--add_width', action='append', default=['0'], help='add channels')
parser.add_argument('--add_layers', action='append', default=['0'], help='add layers')
parser.add_argument('--cifar100', action='store_true', default=False, help='search with cifar100 dataset')
args = parser.parse_args()
args.save = '{}search-{}-{}'.format(args.save, args.note, time.strftime("%Y%m%d-%H%M%S"))
utils.create_exp_dir(args.save, scripts_to_save=glob.glob('*.py'))
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(args.save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
if args.cifar100:
CIFAR_CLASSES = 100
data_folder = 'cifar-100-python'
else:
CIFAR_CLASSES = 10
data_folder = 'cifar-10-batches-py'
def main():
if not torch.cuda.is_available():
logging.info('No GPU device available')
sys.exit(1)
np.random.seed(args.seed)
cudnn.benchmark = True
torch.manual_seed(args.seed)
cudnn.enabled=True
torch.cuda.manual_seed(args.seed)
logging.info("args = %s", args)
# prepare dataset
if args.cifar100:
train_transform, valid_transform = utils._data_transforms_cifar100(args)
else:
train_transform, valid_transform = utils._data_transforms_cifar10(args)
if args.cifar100:
train_data = dset.CIFAR100(root=args.tmp_data_dir, train=True, download=True, transform=train_transform)
else:
train_data = dset.CIFAR10(root=args.tmp_data_dir, train=True, download=True, transform=train_transform)
num_train = len(train_data)
indices = list(range(num_train))
split = int(np.floor(args.train_portion * num_train))
train_queue = torch.utils.data.DataLoader(
train_data, batch_size=args.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
pin_memory=True, num_workers=args.workers)
valid_queue = torch.utils.data.DataLoader(
train_data, batch_size=args.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]),
pin_memory=True, num_workers=args.workers)
# build Network
criterion = nn.CrossEntropyLoss()
criterion = criterion.cuda()
switches = []
for i in range(14):
switches.append([True for j in range(len(PRIMITIVES))])
switches_normal = copy.deepcopy(switches)
switches_reduce = copy.deepcopy(switches)
# To be moved to args
num_to_keep = [5, 3, 1]
num_to_drop = [3, 2, 2]
if len(args.add_width) == 3:
add_width = args.add_width
else:
add_width = [0, 0, 0]
if len(args.add_layers) == 3:
add_layers = args.add_layers
else:
add_layers = [0, 6, 12]
if len(args.dropout_rate) ==3:
drop_rate = args.dropout_rate
else:
drop_rate = [0.0, 0.0, 0.0]
eps_no_archs = [10, 10, 10]
for sp in range(len(num_to_keep)):
model = Network(args.init_channels + int(add_width[sp]), CIFAR_CLASSES, args.layers + int(add_layers[sp]), criterion, switches_normal=switches_normal, switches_reduce=switches_reduce, p=float(drop_rate[sp]))
model = nn.DataParallel(model)
model = model.cuda()
logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
network_params = []
for k, v in model.named_parameters():
if not (k.endswith('alphas_normal') or k.endswith('alphas_reduce')):
network_params.append(v)
optimizer = torch.optim.SGD(
network_params,
args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay)
optimizer_a = torch.optim.Adam(model.module.arch_parameters(),
lr=args.arch_learning_rate, betas=(0.5, 0.999), weight_decay=args.arch_weight_decay)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, float(args.epochs), eta_min=args.learning_rate_min)
sm_dim = -1
epochs = args.epochs
eps_no_arch = eps_no_archs[sp]
scale_factor = 0.2
for epoch in range(epochs):
scheduler.step()
lr = scheduler.get_lr()[0]
logging.info('Epoch: %d lr: %e', epoch, lr)
epoch_start = time.time()
# training
if epoch < eps_no_arch:
model.module.p = float(drop_rate[sp]) * (epochs - epoch - 1) / epochs
model.module.update_p()
train_acc, train_obj = train(train_queue, valid_queue, model, network_params, criterion, optimizer, optimizer_a, lr, train_arch=False)
else:
model.module.p = float(drop_rate[sp]) * np.exp(-(epoch - eps_no_arch) * scale_factor)
model.module.update_p()
train_acc, train_obj = train(train_queue, valid_queue, model, network_params, criterion, optimizer, optimizer_a, lr, train_arch=True)
logging.info('Train_acc %f', train_acc)
epoch_duration = time.time() - epoch_start
logging.info('Epoch time: %ds', epoch_duration)
# validation
if epochs - epoch < 5:
valid_acc, valid_obj = infer(valid_queue, model, criterion)
logging.info('Valid_acc %f', valid_acc)
utils.save(model, os.path.join(args.save, 'weights.pt'))
print('------Dropping %d paths------' % num_to_drop[sp])
# Save switches info for s-c refinement.
if sp == len(num_to_keep) - 1:
switches_normal_2 = copy.deepcopy(switches_normal)
switches_reduce_2 = copy.deepcopy(switches_reduce)
# drop operations with low architecture weights
arch_param = model.module.arch_parameters()
normal_prob = F.softmax(arch_param[0], dim=sm_dim).data.cpu().numpy()
for i in range(14):
idxs = []
for j in range(len(PRIMITIVES)):
if switches_normal[i][j]:
idxs.append(j)
if sp == len(num_to_keep) - 1:
# for the last stage, drop all Zero operations
drop = get_min_k_no_zero(normal_prob[i, :], idxs, num_to_drop[sp])
else:
drop = get_min_k(normal_prob[i, :], num_to_drop[sp])
for idx in drop:
switches_normal[i][idxs[idx]] = False
reduce_prob = F.softmax(arch_param[1], dim=-1).data.cpu().numpy()
for i in range(14):
idxs = []
for j in range(len(PRIMITIVES)):
if switches_reduce[i][j]:
idxs.append(j)
if sp == len(num_to_keep) - 1:
drop = get_min_k_no_zero(reduce_prob[i, :], idxs, num_to_drop[sp])
else:
drop = get_min_k(reduce_prob[i, :], num_to_drop[sp])
for idx in drop:
switches_reduce[i][idxs[idx]] = False
logging.info('switches_normal = %s', switches_normal)
logging_switches(switches_normal)
logging.info('switches_reduce = %s', switches_reduce)
logging_switches(switches_reduce)
if sp == len(num_to_keep) - 1:
arch_param = model.module.arch_parameters()
normal_prob = F.softmax(arch_param[0], dim=sm_dim).data.cpu().numpy()
reduce_prob = F.softmax(arch_param[1], dim=sm_dim).data.cpu().numpy()
normal_final = [0 for idx in range(14)]
reduce_final = [0 for idx in range(14)]
# remove all Zero operations
for i in range(14):
if switches_normal_2[i][0] == True:
normal_prob[i][0] = 0
normal_final[i] = max(normal_prob[i])
if switches_reduce_2[i][0] == True:
reduce_prob[i][0] = 0
reduce_final[i] = max(reduce_prob[i])
# Generate Architecture, similar to DARTS
keep_normal = [0, 1]
keep_reduce = [0, 1]
n = 3
start = 2
for i in range(3):
end = start + n
tbsn = normal_final[start:end]
tbsr = reduce_final[start:end]
edge_n = sorted(range(n), key=lambda x: tbsn[x])
keep_normal.append(edge_n[-1] + start)
keep_normal.append(edge_n[-2] + start)
edge_r = sorted(range(n), key=lambda x: tbsr[x])
keep_reduce.append(edge_r[-1] + start)
keep_reduce.append(edge_r[-2] + start)
start = end
n = n + 1
# set switches according the ranking of arch parameters
for i in range(14):
if not i in keep_normal:
for j in range(len(PRIMITIVES)):
switches_normal[i][j] = False
if not i in keep_reduce:
for j in range(len(PRIMITIVES)):
switches_reduce[i][j] = False
# translate switches into genotype
genotype = parse_network(switches_normal, switches_reduce)
logging.info(genotype)
## restrict skipconnect (normal cell only)
logging.info('Restricting skipconnect...')
# generating genotypes with different numbers of skip-connect operations
for sks in range(0, 9):
max_sk = 8 - sks
num_sk = check_sk_number(switches_normal)
if not num_sk > max_sk:
continue
while num_sk > max_sk:
normal_prob = delete_min_sk_prob(switches_normal, switches_normal_2, normal_prob)
switches_normal = keep_1_on(switches_normal_2, normal_prob)
switches_normal = keep_2_branches(switches_normal, normal_prob)
num_sk = check_sk_number(switches_normal)
logging.info('Number of skip-connect: %d', max_sk)
genotype = parse_network(switches_normal, switches_reduce)
logging.info(genotype)
def train(train_queue, valid_queue, model, network_params, criterion, optimizer, optimizer_a, lr, train_arch=True):
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
top5 = utils.AvgrageMeter()
for step, (input, target) in enumerate(train_queue):
model.train()
n = input.size(0)
input = input.cuda()
target = target.cuda(non_blocking=True)
if train_arch:
# In the original implementation of DARTS, it is input_search, target_search = next(iter(valid_queue), which slows down
# the training when using PyTorch 0.4 and above.
try:
input_search, target_search = next(valid_queue_iter)
except:
valid_queue_iter = iter(valid_queue)
input_search, target_search = next(valid_queue_iter)
input_search = input_search.cuda()
target_search = target_search.cuda(non_blocking=True)
optimizer_a.zero_grad()
logits = model(input_search)
loss_a = criterion(logits, target_search)
loss_a.backward()
nn.utils.clip_grad_norm_(model.module.arch_parameters(), args.grad_clip)
optimizer_a.step()
optimizer.zero_grad()
logits = model(input)
loss = criterion(logits, target)
loss.backward()
nn.utils.clip_grad_norm_(network_params, args.grad_clip)
optimizer.step()
prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
objs.update(loss.data.item(), n)
top1.update(prec1.data.item(), n)
top5.update(prec5.data.item(), n)
if step % args.report_freq == 0:
logging.info('TRAIN Step: %03d Objs: %e R1: %f R5: %f', step, objs.avg, top1.avg, top5.avg)
return top1.avg, objs.avg
def infer(valid_queue, model, criterion):
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
top5 = utils.AvgrageMeter()
model.eval()
for step, (input, target) in enumerate(valid_queue):
input = input.cuda()
target = target.cuda(non_blocking=True)
with torch.no_grad():
logits = model(input)
loss = criterion(logits, target)
prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
n = input.size(0)
objs.update(loss.data.item(), n)
top1.update(prec1.data.item(), n)
top5.update(prec5.data.item(), n)
if step % args.report_freq == 0:
logging.info('valid %03d %e %f %f', step, objs.avg, top1.avg, top5.avg)
return top1.avg, objs.avg
def parse_network(switches_normal, switches_reduce):
def _parse_switches(switches):
n = 2
start = 0
gene = []
step = 4
for i in range(step):
end = start + n
for j in range(start, end):
for k in range(len(switches[j])):
if switches[j][k]:
gene.append((PRIMITIVES[k], j - start))
start = end
n = n + 1
return gene
gene_normal = _parse_switches(switches_normal)
gene_reduce = _parse_switches(switches_reduce)
concat = range(2, 6)
genotype = Genotype(
normal=gene_normal, normal_concat=concat,
reduce=gene_reduce, reduce_concat=concat
)
return genotype
def get_min_k(input_in, k):
input = copy.deepcopy(input_in)
index = []
for i in range(k):
idx = np.argmin(input)
index.append(idx)
input[idx] = 1
return index
def get_min_k_no_zero(w_in, idxs, k):
w = copy.deepcopy(w_in)
index = []
if 0 in idxs:
zf = True
else:
zf = False
if zf:
w = w[1:]
index.append(0)
k = k - 1
for i in range(k):
idx = np.argmin(w)
w[idx] = 1
if zf:
idx = idx + 1
index.append(idx)
return index
def logging_switches(switches):
for i in range(len(switches)):
ops = []
for j in range(len(switches[i])):
if switches[i][j]:
ops.append(PRIMITIVES[j])
logging.info(ops)
def check_sk_number(switches):
count = 0
for i in range(len(switches)):
if switches[i][3]:
count = count + 1
return count
def delete_min_sk_prob(switches_in, switches_bk, probs_in):
def _get_sk_idx(switches_in, switches_bk, k):
if not switches_in[k][3]:
idx = -1
else:
idx = 0
for i in range(3):
if switches_bk[k][i]:
idx = idx + 1
return idx
probs_out = copy.deepcopy(probs_in)
sk_prob = [1.0 for i in range(len(switches_bk))]
for i in range(len(switches_in)):
idx = _get_sk_idx(switches_in, switches_bk, i)
if not idx == -1:
sk_prob[i] = probs_out[i][idx]
d_idx = np.argmin(sk_prob)
idx = _get_sk_idx(switches_in, switches_bk, d_idx)
probs_out[d_idx][idx] = 0.0
return probs_out
def keep_1_on(switches_in, probs):
switches = copy.deepcopy(switches_in)
for i in range(len(switches)):
idxs = []
for j in range(len(PRIMITIVES)):
if switches[i][j]:
idxs.append(j)
drop = get_min_k_no_zero(probs[i, :], idxs, 2)
for idx in drop:
switches[i][idxs[idx]] = False
return switches
def keep_2_branches(switches_in, probs):
switches = copy.deepcopy(switches_in)
final_prob = [0.0 for i in range(len(switches))]
for i in range(len(switches)):
final_prob[i] = max(probs[i])
keep = [0, 1]
n = 3
start = 2
for i in range(3):
end = start + n
tb = final_prob[start:end]
edge = sorted(range(n), key=lambda x: tb[x])
keep.append(edge[-1] + start)
keep.append(edge[-2] + start)
start = end
n = n + 1
for i in range(len(switches)):
if not i in keep:
for j in range(len(PRIMITIVES)):
switches[i][j] = False
return switches
if __name__ == '__main__':
start_time = time.time()
main()
end_time = time.time()
duration = end_time - start_time
logging.info('Total searching time: %ds', duration)