-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
54 lines (47 loc) · 1.75 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import io
import base64
import datetime
import torchvision.transforms as transforms
from torchvision import models
from PIL import Image
import json
# model
model = models.densenet121(pretrained=True)
model.eval()
# imagenet classes
imagenet_class_index = json.load(open('./static/imagenet_class_index.json'))
def transform_image(image_bytes):
my_transforms = transforms.Compose([transforms.Resize(255),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
[0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
image = Image.open(io.BytesIO(image_bytes))
return my_transforms(image).unsqueeze(0)
def get_prediction(image_bytes):
tensor = transform_image(image_bytes=image_bytes)
outputs = model.forward(tensor)
_, y_hat = outputs.max(1)
predicted_idx = str(y_hat.item())
return imagenet_class_index[predicted_idx]
def get_result(image_file,is_api = False):
start_time = datetime.datetime.now()
image_bytes = image_file.file.read()
class_id,class_name = get_prediction(image_bytes)
end_time = datetime.datetime.now()
time_diff = (end_time - start_time)
execution_time = f'{round(time_diff.total_seconds() * 1000)} ms'
encoded_string = base64.b64encode(image_bytes)
bs64 = encoded_string.decode('utf-8')
image_data = f'data:image/jpeg;base64,{bs64}'
result = {
"inference_time":execution_time,
"predictions":{
"class_id":class_id,
"class_name":class_name
}
}
if not is_api:
result["image_data"]= image_data
return result