Skip to content

Latest commit

 

History

History
67 lines (58 loc) · 2.32 KB

File metadata and controls

67 lines (58 loc) · 2.32 KB


Image Recognition App using FastAPI and PyTorch
In this project, I have tried to build and deploy an Image Recognition App using FastAPI and PyTorch.

Tutorial Youtube gif

fastapi pytorch image recognition

Installation

Run my Project

  git clone https://github.com/bhimrazy/Image-Recognition-App-using-FastAPI-and-PyTorch
  cd Image-Recognition-App-using-FastAPI-and-PyTorch
  python -m venv venv
  source venv/bin/activate
  pip install -r requirements.txt
  uvicorn main:app --reload

Image Recognition App using FastAPI and PyTorch: TODO

  • Create a virtual environment

  • Create FastAPI App

    • Install fast API
    • Install Uvicorn
    • Install Pytest
    • Install Jinja2
    • Install python-multipart
    • Install requests
    • Create a main file with some routes
    • Create a main test file to test the home page route
  • Pytorch Setup

    • Install torch & torchvision (use cpu version for small size)
  • Prediction

    • Create a predict post route
    • Create a file utils.py
    • Test predict route
    • Create some helper function
    • Put some test images inside static folder
    • Create a test to upload an image in predict route
    • Predict
  • Create a home page for prediction

    • Create an index.html file inside the templates directory
    • Setup template and static directory in the main app
    • Initial HTML for home page
    • Use Tailwind CSS cdn link for css
    • Google Fonts
    • Create a form to predict
    • update homepage route for prediction
    • Update UI of the page
    • Add Some javascript to autoload the image
    • Add logo and favicon
    • Add meta tags
    • Add response image for preview as base64 data

📚 RESOURCES:

◆ PyTorch: https://pytorch.org/tutorials/intermediate/flask_rest_api_tutorial.html
◆ FastAPI: https://fastapi.tiangolo.com

Author