forked from zqwei/explore_ephys_data
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_session_PSTH_with_selectivity.m
84 lines (64 loc) · 2.77 KB
/
plot_session_PSTH_with_selectivity.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
% This script plots the grand average PSTH and selectivity (across units
% and trials wtihin one session)
% We exclude fast spiking cells for this analysis
% ephysDataset.cell_type: cell type. 1 is regular spiking cell, 0 is fast
% spiking cell
%
% Plot
% blue: lick right
% red: lick left
%% load data
sessionId = 1; % ID of session to plot
load('ephysDataset.mat') % laod data
%% find the regular spiking units from the session
% sessionIndex should be the assigned sessionId & cell_type needs to be 1 (regular spiking cell)
sessionData = ephysDataset([ephysDataset.sessionIndex]==sessionId & [ephysDataset.cell_type]==1);
numUnit = length(sessionData); % number of units
numTime = length(timeTag); % number of time bins
%% Calculate the mean spike rate of each unit
% predefine matrix of nan's (i.e. 'not a number')_
meanR = nan(numUnit, numTime);
meanL = nan(numUnit, numTime);
selectivity = nan(numUnit, numTime);
% run a loop to extract data from each unit
for cellID = 1:numUnit
% calcualte mean PSTH of each unit
meanR(cellID,:) = mean(sessionData(cellID).unit_yes_trial,1);
meanL(cellID,:) = mean(sessionData(cellID).unit_no_trial,1);
% calculate selectivity of each cell
% Only cells with siginificant selectivity during the delay epoch is included
% negative selectivity during the delay epoch is flipped to be positive
% extarct spike rate during the delay epoch
delayTimbin = timeTag>-1.3 & timeTag<0; % timbin of delay epoch
srDelayR = mean(sessionData(cellID).unit_yes_trial(:,delayTimbin),2); % spike rate during delay lick R trial
srDelayL = mean(sessionData(cellID).unit_no_trial(:,delayTimbin),2); % spike rate during delay lick L trial
% ranksum test to check if spike rates are significantly different between two trial types
p = ranksum(srDelayR,srDelayL);
% if spike rates are significantly different calcualte selectivity
% reverse the direction if slectivity is negative
% non selective trials are kept as nan
if p < 0.05 && mean(srDelayR) > mean(srDelayL)
selectivity(cellID,:) = meanR(cellID,:) - meanL(cellID,:);
elseif p < 0.05 && mean(srDelayR) < mean(srDelayL)
selectivity(cellID,:) = meanL(cellID,:) - meanR(cellID,:);
end
end
%% plot the PSTH
figure
hold on
plot(timeTag,mean(meanR),'b') % mean spike rate among cells
plot(timeTag,mean(meanL),'r')
gridxy([-2.6 -1.3 0],'Color','k','Linestyle','--') ;
xlim([-3 1.5]);
xlabel('Time (s)')
ylabel('Spikes per s')
hold off
%% plot the selectivity
figure
hold on
plot(timeTag,nanmean(selectivity),'k') % mean selectivty among cells
gridxy([-2.6 -1.3 0],'Color','k','Linestyle','--') ;
xlim([-3 1.5]);
xlabel('Time (s)')
ylabel('Selectivity (Spikes per s)')
hold off