-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathtrain_parallel_wavenet.py
252 lines (215 loc) · 10.2 KB
/
train_parallel_wavenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import json
import glob
import tensorflow as tf
import shutil
import os
from argparse import ArgumentParser, Namespace
from wavenet import parallel_wavenet, wavenet
from auxilaries import utils, config_str, enhance_log
from deployment import model_deploy
from auxilaries import reader
from train_wavenet import _init_logging
slim = tf.contrib.slim
EXP_TAG = ''
def train(args):
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
tf.logging.set_verbosity(args.log)
clone_on_cpu = args.gpu_id == ''
num_clones = len(args.gpu_id.split(','))
###
# get teacher info.
###
teacher_dir = utils.shell_path(args.teacher_dir)
assert tf.gfile.IsDirectory(teacher_dir)
json_in_dir = glob.glob(os.path.join(teacher_dir, '*.json'))
assert len(json_in_dir) == 1
te_json = json_in_dir[0]
te_ckpt = tf.train.latest_checkpoint(teacher_dir)
assert tf.train.checkpoint_exists(te_ckpt)
with open(te_json, 'rt') as F:
configs = json.load(F)
te_hparams = Namespace(**configs)
setattr(te_hparams, 'use_as_teacher', True)
teacher = wavenet.Wavenet(te_hparams)
###
# get student info.
###
if args.log_root:
if args.config is None:
raise RuntimeError('No config json specified.')
config_json = args.config
with open(config_json, 'rt') as F:
configs = json.load(F)
st_hparams = Namespace(**configs)
logdir_name = config_str.get_config_time_str(st_hparams, 'parallel_wavenet', EXP_TAG)
logdir = os.path.join(args.log_root, logdir_name)
os.makedirs(logdir, exist_ok=True)
shutil.copy(config_json, logdir)
else:
logdir = args.logdir
config_json = glob.glob(os.path.join(logdir, '*.json'))[0]
with open(config_json, 'rt') as F:
configs = json.load(F)
st_hparams = Namespace(**configs)
enhance_log.add_log_file(logdir)
if not args.log_root:
tf.logging.info('Continue running\n\n')
tf.logging.info('using config form {}'.format(config_json))
tf.logging.info('Saving to {}'.format(logdir))
pwn = parallel_wavenet.ParallelWavenet(st_hparams, teacher, args.train_path)
pwn_config_str = enhance_log.instance_attr_to_str(pwn)
teacher_config_str = enhance_log.instance_attr_to_str(teacher)
tf.logging.info('\n' + pwn_config_str)
tf.logging.info('\nteacher form {}\n'.format(teacher_dir) + teacher_config_str)
def _data_dep_init():
inputs_val = reader.get_init_batch(
pwn.train_path, batch_size=args.total_batch_size, seq_len=pwn.wave_length)
mel_data = inputs_val['mel']
_inputs_dict = {'mel': tf.placeholder(dtype=tf.float32, shape=mel_data.shape)}
init_ff_dict = pwn.feed_forward(_inputs_dict, init=True)
def callback(session):
tf.logging.info('Calculate initial statistics.')
init_out = session.run(
init_ff_dict, feed_dict={_inputs_dict['mel']: mel_data})
new_x = init_out['x']
mean = init_out['mean_tot']
scale = init_out['scale_tot']
_init_logging(new_x, 'new_x')
_init_logging(mean, 'mean')
_init_logging(scale, 'scale')
tf.logging.info('Done Calculate initial statistics.')
return callback
def _trans_conv_init_from_teacher(te_vars, st_vars):
"""
Initialize the separate iaf transposed convolution stacks or shared transposed
convolution stack with the teacher's transposed convolution stack.
"""
te_trans_conv_var_names = [var.name for var in te_vars
if pwn.upsample_conv_name in var.name]
te_trans_conv_vars = [var for var in te_vars
if var.name in te_trans_conv_var_names]
st_trans_conv_vars_flow_nested = []
for te_tcvn in te_trans_conv_var_names:
st_tcv_for_flows = []
for var in st_vars:
if var.name.endswith(te_tcvn):
st_tcv_for_flows.append(var)
st_trans_conv_vars_flow_nested.append(st_tcv_for_flows)
assert len(te_trans_conv_vars) == len(st_trans_conv_vars_flow_nested)
assign_ops = []
for te_tcv, st_tcv_for_flows in zip(
te_trans_conv_vars, st_trans_conv_vars_flow_nested):
for st_tcv in st_tcv_for_flows:
assign_ops.append(tf.assign(st_tcv, te_tcv))
def assign_fn(session):
tf.logging.info('Load transposed convolution weights form teacher')
session.run(assign_ops)
tf.logging.info('Done load transposed convolution weights form teacher')
return assign_fn
def _model_fn(_inputs_dict):
ff_dict = pwn.feed_forward(_inputs_dict)
ff_dict.update(_inputs_dict)
loss_dict = pwn.calculate_loss(ff_dict)
loss = loss_dict['loss']
tf.add_to_collection(tf.GraphKeys.LOSSES, loss)
for loss_key, loss_val in loss_dict.items():
tf.summary.scalar(loss_key, loss_val)
with tf.Graph().as_default():
total_batch_size = args.total_batch_size
assert total_batch_size % num_clones == 0
clone_batch_size = int(total_batch_size / num_clones)
deploy_config = model_deploy.DeploymentConfig(
num_clones=num_clones, clone_on_cpu=clone_on_cpu,
num_ps_tasks=0,
worker_job_name='localhost', ps_job_name='localhost')
with tf.device(deploy_config.inputs_device()):
inputs_dict = pwn.get_batch(clone_batch_size)
# get a mel batch not corresponding to the wave batch.
# if contrastive loss is not used, this input operation will not be evaluated.
inputs_dict['mel_rand'] = pwn.get_batch(clone_batch_size)['mel']
summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES))
clones = model_deploy.create_clones(deploy_config, _model_fn, [inputs_dict])
first_clone_scope = deploy_config.clone_scope(0)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)
summaries.update(tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope))
with tf.device(deploy_config.variables_device()):
global_step = tf.get_variable(
"global_step", [],
tf.int32,
initializer=tf.constant_initializer(0),
trainable=False)
###
# variables to train
###
st_var_list = [var for var in tf.trainable_variables() if 'iaf' in var.name]
filtered_st_var_list = pwn.filter_update_variables(st_var_list)
with tf.device(deploy_config.optimizer_device()):
lr = tf.constant(pwn.learning_rate_schedule[0])
for key, value in pwn.learning_rate_schedule.items():
lr = tf.cond(
tf.less(global_step, key), lambda: lr, lambda: tf.constant(value))
summaries.add(tf.summary.scalar("learning_rate", lr))
optimizer = tf.train.AdamOptimizer(lr, epsilon=1e-8)
ema = tf.train.ExponentialMovingAverage(decay=0.9999, num_updates=global_step)
loss, clone_grads_vars = model_deploy.optimize_clones(
clones, optimizer, var_list=filtered_st_var_list)
update_ops.append(
optimizer.apply_gradients(clone_grads_vars, global_step=global_step))
update_ops.append(ema.apply(filtered_st_var_list))
summaries.add(tf.summary.scalar("train_loss", loss))
update_op = tf.group(*update_ops)
with tf.control_dependencies([update_op]):
train_tensor = tf.identity(loss, name='train_op')
###
# restore teacher and other init ops
###
te_var_list = [var for var in tf.trainable_variables() if 'iaf' not in var.name]
# teacher use EMA
te_var_shardow_dict = {'{}/ExponentialMovingAverage'.format(tv.name[:-2]): tv
for tv in te_var_list}
restore_init_fn = tf.contrib.framework.assign_from_checkpoint_fn(
te_ckpt, te_var_shardow_dict)
data_dep_init_fn = _data_dep_init()
share_trans_conv_init_fn = _trans_conv_init_from_teacher(te_var_list, st_var_list)
def group_init_fn(session):
# the order of the init functions is important, don't change it.
restore_init_fn(session)
data_dep_init_fn(session)
share_trans_conv_init_fn(session)
session_config = tf.ConfigProto(allow_soft_placement=True)
session_config.gpu_options.allow_growth = True
summary_op = tf.summary.merge(list(summaries), name='summary_op')
slim.learning.train(
train_tensor,
logdir=logdir,
number_of_steps=pwn.num_iters,
summary_op=summary_op,
global_step=global_step,
log_every_n_steps=100,
save_summaries_secs=600,
save_interval_secs=3600,
session_config=session_config,
init_fn=group_init_fn)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("--config", required=False,
help="Model configuration name")
parser.add_argument("--train_path", required=True,
help="The path to the train tfrecord.")
parser.add_argument("--teacher_dir", required=True,
help="The path saves the teacher config and json.")
parser.add_argument("--logdir", default="/tmp/nsynth",
help="The log directory for this experiment.")
parser.add_argument("--log_root", default="",
help="The log directory for this experiment.")
parser.add_argument("--total_batch_size", default=4, type=int,
help="Batch size spread across all sync replicas."
"We use a size of 32.")
parser.add_argument("--log", default="INFO",
help="The threshold for what messages will be logged."
"DEBUG, INFO, WARN, ERROR, or FATAL.")
parser.add_argument("--gpu_id", default='0',
help="gpu device for generation, "
"cpu e.g. \"\", single gpu e.g. \"0\", multiple gpu e.g. \"1,3,5\"")
args = parser.parse_args()
train(args)