forked from google-deepmind/learning-to-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
128 lines (113 loc) · 4.37 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# Copyright 2016 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Learning 2 Learn utils."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from timeit import default_timer as timer
import numpy as np
from six.moves import xrange
import problems
def run_epoch(sess, cost_op, ops, reset, num_unrolls):
"""Runs one optimization epoch."""
start = timer()
sess.run(reset)
for _ in xrange(num_unrolls):
cost = sess.run([cost_op] + ops)[0]
return timer() - start, cost
def print_stats(header, total_error, total_time, n):
"""Prints experiment statistics."""
print(header)
print("Log Mean Final Error: {:.2f}".format(np.log10(total_error / n)))
print("Mean epoch time: {:.2f} s".format(total_time / n))
def get_net_path(name, path):
return None if path is None else os.path.join(path, name + ".l2l")
def get_default_net_config(name, path):
return {
"net": "CoordinateWiseDeepLSTM",
"net_options": {
"layers": (20, 20),
"preprocess_name": "LogAndSign",
"preprocess_options": {"k": 5},
"scale": 0.01,
},
"net_path": get_net_path(name, path)
}
def get_config(problem_name, path=None):
"""Returns problem configuration."""
if problem_name == "simple":
problem = problems.simple()
net_config = {"cw": {
"net": "CoordinateWiseDeepLSTM",
"net_options": {"layers": (), "initializer": "zeros"},
"net_path": get_net_path("cw", path)
}}
net_assignments = None
elif problem_name == "simple-multi":
problem = problems.simple_multi_optimizer()
net_config = {
"cw": {
"net": "CoordinateWiseDeepLSTM",
"net_options": {"layers": (), "initializer": "zeros"},
"net_path": get_net_path("cw", path)
},
"adam": {
"net": "Adam",
"net_options": {"learning_rate": 0.1}
}
}
net_assignments = [("cw", ["x_0"]), ("adam", ["x_1"])]
elif problem_name == "quadratic":
problem = problems.quadratic(batch_size=128, num_dims=10)
net_config = {"cw": {
"net": "CoordinateWiseDeepLSTM",
"net_options": {"layers": (20, 20)},
"net_path": get_net_path("cw", path)
}}
net_assignments = None
elif problem_name == "mnist":
mode = "train" if path is None else "test"
problem = problems.mnist(layers=(20,), mode=mode)
net_config = {"cw": get_default_net_config("cw", path)}
net_assignments = None
elif problem_name == "cifar":
mode = "train" if path is None else "test"
problem = problems.cifar10("cifar10",
conv_channels=(16, 16, 16),
linear_layers=(32,),
mode=mode)
net_config = {"cw": get_default_net_config("cw", path)}
net_assignments = None
elif problem_name == "cifar-multi":
mode = "train" if path is None else "test"
problem = problems.cifar10("cifar10",
conv_channels=(16, 16, 16),
linear_layers=(32,),
mode=mode)
net_config = {
"conv": get_default_net_config("conv", path),
"fc": get_default_net_config("fc", path)
}
conv_vars = ["conv_net_2d/conv_2d_{}/w".format(i) for i in xrange(3)]
fc_vars = ["conv_net_2d/conv_2d_{}/b".format(i) for i in xrange(3)]
fc_vars += ["conv_net_2d/batch_norm_{}/beta".format(i) for i in xrange(3)]
fc_vars += ["mlp/linear_{}/w".format(i) for i in xrange(2)]
fc_vars += ["mlp/linear_{}/b".format(i) for i in xrange(2)]
fc_vars += ["mlp/batch_norm/beta"]
net_assignments = [("conv", conv_vars), ("fc", fc_vars)]
else:
raise ValueError("{} is not a valid problem".format(problem_name))
return problem, net_config, net_assignments