forked from google-deepmind/learning-to-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
116 lines (94 loc) · 3.88 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# Copyright 2016 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Learning 2 Learn training."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from six.moves import xrange
import tensorflow as tf
from tensorflow.contrib.learn.python.learn import monitored_session as ms
import meta
import util
flags = tf.flags
logging = tf.logging
FLAGS = flags.FLAGS
flags.DEFINE_string("save_path", None, "Path for saved meta-optimizer.")
flags.DEFINE_integer("num_epochs", 10000, "Number of training epochs.")
flags.DEFINE_integer("log_period", 100, "Log period.")
flags.DEFINE_integer("evaluation_period", 1000, "Evaluation period.")
flags.DEFINE_integer("evaluation_epochs", 20, "Number of evaluation epochs.")
flags.DEFINE_string("problem", "simple", "Type of problem.")
flags.DEFINE_integer("num_steps", 100,
"Number of optimization steps per epoch.")
flags.DEFINE_integer("unroll_length", 20, "Meta-optimizer unroll length.")
flags.DEFINE_float("learning_rate", 0.001, "Learning rate.")
flags.DEFINE_boolean("second_derivatives", False, "Use second derivatives.")
def main(_):
# Configuration.
num_unrolls = FLAGS.num_steps // FLAGS.unroll_length
if FLAGS.save_path is not None:
if os.path.exists(FLAGS.save_path):
raise ValueError("Folder {} already exists".format(FLAGS.save_path))
else:
os.mkdir(FLAGS.save_path)
# Problem.
problem, net_config, net_assignments = util.get_config(FLAGS.problem)
# Optimizer setup.
optimizer = meta.MetaOptimizer(**net_config)
minimize = optimizer.meta_minimize(
problem, FLAGS.unroll_length,
learning_rate=FLAGS.learning_rate,
net_assignments=net_assignments,
second_derivatives=FLAGS.second_derivatives)
step, update, reset, cost_op, _ = minimize
with ms.MonitoredSession() as sess:
# Prevent accidental changes to the graph.
tf.get_default_graph().finalize()
best_evaluation = float("inf")
total_time = 0
total_cost = 0
for e in xrange(FLAGS.num_epochs):
# Training.
time, cost = util.run_epoch(sess, cost_op, [update, step], reset,
num_unrolls)
total_time += time
total_cost += cost
# Logging.
if (e + 1) % FLAGS.log_period == 0:
util.print_stats("Epoch {}".format(e + 1), total_cost, total_time,
FLAGS.log_period)
total_time = 0
total_cost = 0
# Evaluation.
if (e + 1) % FLAGS.evaluation_period == 0:
eval_cost = 0
eval_time = 0
for _ in xrange(FLAGS.evaluation_epochs):
time, cost = util.run_epoch(sess, cost_op, [update], reset,
num_unrolls)
eval_time += time
eval_cost += cost
util.print_stats("EVALUATION", eval_cost, eval_time,
FLAGS.evaluation_epochs)
if FLAGS.save_path is not None and eval_cost < best_evaluation:
print("Removing previously saved meta-optimizer")
for f in os.listdir(FLAGS.save_path):
os.remove(os.path.join(FLAGS.save_path, f))
print("Saving meta-optimizer to {}".format(FLAGS.save_path))
optimizer.save(sess, FLAGS.save_path)
best_evaluation = eval_cost
if __name__ == "__main__":
tf.app.run()