-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmnist.py
190 lines (165 loc) · 6.5 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from __future__ import division, print_function
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import *
import numpy as np
from keras.datasets import mnist
from keras.utils.np_utils import to_categorical
from keras.optimizers import SGD
from sklearn.linear_model import LogisticRegression
def get_cnn(n_classes):
model = Sequential()
model.add(Convolution2D(32, 3, 3, activation='relu', input_shape=(28,28,1)))
model.add(Convolution2D(32, 3, 3, activation='relu'))
model.add(MaxPooling2D())
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dropout(0.2))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(n_classes, activation='softmax'))
model.compile(optimizer='Adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
return model
def get_mlp(n_classes):
model = Sequential()
model.add(Dense(128, activation='relu',input_shape=(784,)))
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(n_classes, activation='softmax'))
model.compile(optimizer='Adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
return model
def get_mlp_leek(n_classes):
model = Sequential()
model.add(Dense(160, activation='tanh',input_shape=(784,)))
model.add(Dense(160, activation='tanh'))
model.add(Dense(160, activation='tanh'))
model.add(Dense(160, activation='tanh'))
model.add(Dense(160, activation='tanh'))
model.add(Dense(n_classes, activation='softmax'))
## Attempts to match h2o documentation as closely as possible
## https://cran.r-project.org/web/packages/h2o/h2o.pdf
opt = SGD(lr=0.005, momentum=0.0,decay=0.99, nesterov=True)
model.compile(optimizer=opt,
loss='categorical_crossentropy',
metrics=['accuracy'])
return model
def get_leekassso_predictors(x,y,n_preds):
eps = 1e-6
## This really makes me appreciate dplyr!
x_0 = x[np.where(y==0)]
x_1 = x[np.where(y==1)]
x0_bar = x_0.mean(axis=0)
x1_bar = x_1.mean(axis=0)
x0_sigma = x_0.std(axis=0)
x1_sigma = x_1.std(axis=0)
sigma_pool = np.sqrt( (x0_sigma**2)/len(x_0) + (x1_sigma**2)/len(x_1) ) + eps
all_t = np.abs((x0_bar - x1_bar)/sigma_pool)
top_10 = np.argsort(-all_t)[0:n_preds]
return top_10
## Load the data ##
(X_train, y_train), (X_test, y_test) = mnist.load_data()
## Set the number of training samples to use ##
train_sizes = [10,20,40,60,80]
batch_size = 1
X_train = np.expand_dims(X_train, axis=3)
X_test = np.expand_dims (X_test, axis=3)
# Get training data for 0 and 1
inds = np.where((y_train == 0) | (y_train == 1))[0]
X_train_small = X_train[inds]
X_train_small = X_train_small[:train_size]
y_train_small = y_train[inds]
y_train_small = y_train_small[:train_size]
# Get test data for 0 and 1 only
inds_test = np.where((y_test == 0) | (y_test == 1))
X_test_01 = X_test[inds_test]
y_test_01 = y_test[inds_test]
# split into validation and test sets
test_start_ind = int(np.floor((len(X_test_01)/2)))
X_test_small = X_test_01[:test_start_ind]
X_final_test = X_test_01[test_start_ind:]
y_test_small = y_test_01[:test_start_ind]
y_final_test = y_test_01[test_start_ind:]
# one hot labels
one_hot_train = to_categorical(y_train_small, 2)
one_hot_test = to_categorical(y_test_small, 2)
one_hot_final_test = to_categorical(y_final_test, 2)
n_classes = one_hot_train.shape[1]
folds = 5
evals = np.zeros((len(train_sizes*folds),3))
index = 0
for train_size in train_sizes:
for i in range(5):
fold_inds = np.random.choice(inds,train_size)
X_train_fold = X_train[fold_inds]
y_train_fold = y_train[fold_inds]
one_hot_fold = to_categorical(y_train_fold, 2)
model = get_cnn(n_classes)
model.fit(X_train_fold, one_hot_fold, nb_epoch=200)
score = (model.evaluate(X_final_test, one_hot_final_test, batch_size=128))[1]
evals[index,0] = train_size
evals[index,1] = i
evals[index,2] = score
index += 1
np.savetxt('cnn.csv',evals)
X_test_flat = X_test_small.reshape((len(X_test_small),784))
X_final_test_flat = X_final_test.reshape((len(X_final_test),784))
folds = 5
evals = np.zeros((len(train_sizes*folds),3))
index = 0
for train_size in train_sizes:
for i in range(5):
fold_inds = np.random.choice(inds,train_size)
X_train_fold = X_train[fold_inds].reshape(train_size,784)
y_train_fold = y_train[fold_inds]
one_hot_fold = to_categorical(y_train_fold, 2)
model = get_mlp(n_classes)
model.fit(X_train_fold, one_hot_fold, nb_epoch=200,
validation_data=[X_test_flat, one_hot_test])
score = (model.evaluate(X_final_test_flat, one_hot_final_test, batch_size=batch_size))[1]
evals[index,0] = train_size
evals[index,1] = i
evals[index,2] = score
index += 1
np.savetxt('mlp.csv',evals)
folds = 5
evals = np.zeros((len(train_sizes*folds),3))
index = 0
for train_size in train_sizes:
for i in range(5):
fold_inds = np.random.choice(inds,train_size)
X_train_fold = X_train[fold_inds].reshape(train_size,784)
y_train_fold = y_train[fold_inds]
one_hot_fold = to_categorical(y_train_fold, 2)
model = get_mlp_leek(n_classes)
model.fit(X_train_fold, one_hot_fold, nb_epoch=20,batch_size=1)
score = (model.evaluate(X_final_test_flat, one_hot_final_test, batch_size=256))[1]
evals[index,0] = train_size
evals[index,1] = i
evals[index,2] = score
index += 1
np.savetxt('mlp_leek.csv',evals)
folds = 5
evals = np.zeros((len(train_sizes*folds),3))
index = 0
for train_size in train_sizes:
for i in range(5):
fold_inds = np.random.choice(inds,train_size)
X_train_fold = X_train[fold_inds].reshape(train_size,784)
y_train_fold = y_train[fold_inds]
leekasso_preds = get_leekassso_predictors(X_train_fold,y_train_fold,10)
X_leek = X_train_fold[:,leekasso_preds]
model = LogisticRegression(C=1e6) ## no L2 penalty
model.fit(X_leek, y_train_fold)
score = model.score(X_final_test_flat[:,leekasso_preds],y_final_test)
evals[index,0] = train_size
evals[index,1] = i
evals[index,2] = score
index += 1
np.savetxt('leekasso.csv',evals)