-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathucf_poseAnalysis.py
212 lines (159 loc) · 7.24 KB
/
ucf_poseAnalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# code implemented by Aymen Sayed. Git: aymenx17
import os
import subprocess
import json
import csv
import argparse
'''
This module is adpated to UCF-Anomaly-Detection dataset.
Three functions:
- split_videos ---> It runs ffmpeg on the dataset with fixed fps.
- pose_estimation ---> It runs demo.py from AlphaPose framework on folder frames.
- vis_stats ---> It prints and save statistichs about pose estimation on the dataset.
Note: Each of the first two functions create and new directory structure.
You can select target videos to work with by changing the python list named 'target'.
Example : target = ['Normal_Videos_event', 'Fighting', 'Robbery']
Expected dataset folder structure:
Videos: {
Normal_Videos_event:
{
vid1.mp4, vid2.mp4 . .. .
},
Fighting:
{
vid1.mp4, vid2.mp4 . .. .
},
Robbery:
{
vid1.mp4, vid2.mp4 . .. .
}
}
'''
parser = argparse.ArgumentParser('Pose estimation analysis on UCF-Anomaly-Detection dataset')
parser.add_argument('--split', action='store_true', default=False, help='Store true flag to split videos')
parser.add_argument('--pose', action='store_true', default=False, help='Store true flag to pose estimation')
parser.add_argument('--stats', action='store_true', default=False, help='Store true flag to print and save statistichs')
parser.add_argument('--target', action='store_true', default=False, help='Store true flag if you have choosed targets')
parser.add_argument('--limit', action='store_true', default=False, help='Store true flag to process only videos below certain length')
def load_json(p_ann):
'''
A for loop that reads a list of keypoints and rearrange in a directory whose keys are named as the input frames.
This is done to obtain a suitable format to work with.
'''
# load json
p_ann = os.path.join(p_ann, 'alphapose-results.json')
if os.path.isfile(p_ann):
results = json.load(open(p_ann, 'r'))
anns = {}
last_image_name = ' '
for i in range(len(results)):
imgpath = results[i]['image_id']
if last_image_name != imgpath:
anns[imgpath] = []
anns[imgpath].append({'keypoints':results[i]['keypoints'],'scores':results[i]['score']})
else:
anns[imgpath].append({'keypoints':results[i]['keypoints'],'scores':results[i]['score']})
last_image_name = imgpath
else:
anns = {}
return anns
def split_videos(dset_root, outpath, target):
for i, (dire, folds, fils) in enumerate(os.walk(dset_root)):
if i ==0:
print('Main dataset directory: {}\n Subdirectories within it: {}\n'.format(dire, folds))
continue
if i > 0 and len(fils) > 0 and (dire.split('/')[-1] not in target):
continue
# loop over videos
print('Processing videos in: {}'.format(dire))
for vid_name in fils:
# path to video
pvid = os.path.join(dire, vid_name)
# create a folder for each video
fname = vid_name.split('.mp4')[0]
path_fold = os.path.join(outpath, dire.split('/')[-1], fname)
if not os.path.isdir(path_fold):
os.makedirs(path_fold)
# executing ffmpeg -i file.mp4 -vf fps=5 path/%04d.jpg
print('*' *100)
print(pvid)
print(path_fold)
cmd = "ffmpeg -i {} -vf fps=5 {}/%04d.jpg".format(pvid, path_fold)
subprocess.call(cmd, shell=True)
def pose_estimation(outpath, outanns, target):
max_length = 2e03
args = parser.parse_args()
for i,(dire, folds, fils) in enumerate(os.walk(outpath)):
if i ==0:
print('Main dataset directory: {}\n Subdirectories within it: {}\n'.format(dire, folds))
continue
# run command on the frames
if len(folds) == 0 and len(fils) > 0 and (dire.split('/')[-2] in target):
if args.limit and len(fils) > max_length:
continue
# loop over video frames
print('Processing video frames in: {}'.format(dire))
# run a python module and output the json file at the correpondent annotation folder
ldir = dire.split('/')
out_json = os.path.join(outanns, ldir[-2], ldir[-1])
if not os.path.isdir(out_json):
os.makedirs(out_json)
cmd = "python demo.py --indir {} --outdir {}".format(dire, out_json)
subprocess.call(cmd , shell=True)
def vis_stats(out_splitted):
'''
The function will print and save statistichs and ratios related of detecting pose in UCF Anomaly dataset.
'''
csv_file = 'stats.csv'
with open(csv_file, 'w+') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=['VideoName' ,'NumberOfFramesWithKeypointDetections', 'TotalFrames', 'Percentage'])
writer.writeheader()
for (dire, folds, fils) in os.walk(out_splitted):
if len(folds) == 0 and len(fils) > 0:
num_frames = len(fils)
p_json = os.path.join(dire.replace('trainval', 'trainval_anns'))
anns = load_json(p_json)
if len(anns) >0:
# number of frames with at least one keypoint detection
num_preds = len(anns)
perc = round(num_preds/num_frames, 1) * 100
vn = dire.split('/')[-1]
writer.writerow({ 'VideoName': vn,'NumberOfFramesWithKeypointDetections': num_preds, 'TotalFrames': num_frames, 'Percentage':perc})
print('Number of pose detections over total frames per video: {}/{} Percentage: {}%'.format(num_preds, num_frames, perc))
def main():
# root directory
data_root = '/media/sdc1'
# UCF_Anomalies dataset path. Replace the name trial_dataset with the proper name. Default: Videos
dset_root = os.path.join(data_root, 'Videos')
args = parser.parse_args()
# trainval will be the main dataset folder for the processed videos
out_splitted = os.path.join(data_root, 'trainval')
if not os.path.isdir(out_splitted):
os.mkdir(out_splitted)
# you can select target folders you want to process using this list
if args.target:
target = ['Training-Normal-Videos-Part-1']
else:
target = os.listdir(dset_root)
print('targets: {}'.format(target))
# create new directory structure and write frames at path out_splitted
if args.split:
split_videos(dset_root, out_splitted, target)
# output annotation path (json files)
outanns = os.path.join(data_root, 'trainval_anns')
if not os.path.isdir(outanns):
os.mkdir(outanns)
# set working directory for AlphaPose framework
os.chdir('/home/ubuntu/work/pytorch/intuition/AlphaPose')
# create new directory structure and write annotation files at outanns
if args.pose:
print('\n'*5)
print('Running pose estimation\n\n')
pose_estimation(out_splitted, outanns, target)
# print statistichs
if args.stats:
os.chdir(data_root)
vis_stats(out_splitted)
print('stats.csv is saved in: {}'.format(data_root))
if __name__ == "__main__":
main()