-
Notifications
You must be signed in to change notification settings - Fork 1
/
etl.py
173 lines (139 loc) · 6.47 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import configparser
from datetime import datetime
import os
from pyspark.sql import SparkSession
from pyspark.sql.functions import udf, col, from_unixtime, monotonically_increasing_id
from pyspark.sql.functions import year, month, dayofmonth, hour, weekofyear, date_format, dayofweek
config = configparser.ConfigParser()
config.read('dl.cfg')
os.environ['AWS_ACCESS_KEY_ID']=config['AWS']['AWS_ACCESS_KEY_ID']
os.environ['AWS_SECRET_ACCESS_KEY']=config['AWS']['AWS_SECRET_ACCESS_KEY']
def create_spark_session():
"""Create spark session instance
"""
spark = SparkSession \
.builder \
.appName("Sparkify App") \
.config("spark.jars.packages", "org.apache.hadoop:hadoop-aws:2.7.0") \
.getOrCreate()
return spark
def process_song_data(spark, input_data, output_data):
"""Process the songs data file, extract and create songs and artists tables
:param spark: spark session instance
:param input_data: input file path
:param output_data: output file path
"""
# get filepath to song data file
song_data = os.path.join(input_data, 'song_data/*/*/*/*.json')
# read song data file
df = spark.read.json(song_data)
# extract columns to create songs table
songs_table = df.select("song_id",
"title",
"artist_id",
"year",
"duration") \
.drop_duplicates()
# write songs table to parquet files partitioned by year and artist
songs_table.write \
.parquet(os.path.join(output_data, "songs"), \
mode='overwrite', \
partitionBy=["year","artist_id"])
# extract columns to create artists table
artists_table = df.select("artist_id",
"artist_name",
"artist_location",
"artist_latitude",
"artist_longitude") \
.drop_duplicates()
# write artists table to parquet files
artists_table.write \
.parquet(os.path.join(output_data, 'artists'), \
mode='overwrite')
def process_log_data(spark, input_data, output_data):
"""Process the log data file, extract and create users, time and songplays tables
:param spark: spark session instance
:param input_data: input file path
:param output_data: output file path
"""
# get filepath to log data file
log_data = os.path.join(input_data, 'log-data/*/*/*.json')
# read log data file
df = spark.read.json(log_data)
# filter by actions for song plays
df = df.filter(df.page == "NextSong")
# extract columns for users table
users_table = df.select(
col("userId") .alias("user_id"),
col("firstName").alias("first_name"),
col("lastName") .alias("last_name"),
"gender",
"level") \
.drop_duplicates(subset=['user_id'])
# write users table to parquet files
users_table.write \
.parquet(os.path.join(output_data, "users"), \
mode='overwrite')
# create timestamp column from original timestamp column
get_timestamp = udf(lambda x: str(int(int(x)/1000)))
df = df.withColumn('timestamp', get_timestamp("ts"))
# create datetime column from original timestamp column
get_datetime = udf(lambda x: str(datetime.fromtimestamp(int(x) / 1000.0)))
df = df.withColumn("datetime", get_datetime("ts"))
# extract columns to create time table
time_table = df.withColumn("hour", hour("datetime")) \
.withColumn("day", dayofmonth("datetime")) \
.withColumn("week", weekofyear("datetime")) \
.withColumn("month", month("datetime")) \
.withColumn("year", year("datetime")) \
.withColumn("weekday", dayofweek("datetime")) \
.select(date_format(from_unixtime("timestamp"), 'h:m:s') \
.alias('start_time'), \
"hour",
"day",
"week",
"month",
"year",
"weekday") \
.drop_duplicates()
# write time table to parquet files partitioned by year and month
time_table.write \
.parquet(os.path.join(output_data, "time"), \
mode='overwrite', \
partitionBy=["year","month"])
# read in song data to use for songplays table
song_data = os.path.join(input_data, 'song_data/*/*/*/*.json')
song_df = spark.read.json(song_data)
# extract columns from joined song and log datasets to create songplays table
# match the songs based on song title, artist and duration
df = df.join(song_df, [song_df.title == df.song, \
song_df.artist_name == df.artist, \
song_df.duration == df.length])
songplays_table = df.select(
monotonically_increasing_id().alias('songplay_id'),
date_format(from_unixtime("timestamp"), 'h:m:s').alias('start_time'),
col('userId') .alias('user_id'),
col('level'),
col('song_id'),
col('artist_id'),
col('sessionId') .alias('session_id'),
col('location'),
col('userAgent') .alias('user_agent'),
col('year'),
month('datetime') .alias('month')
)
# write songplays table to parquet files partitioned by year and month
songplays_table.write \
.partitionBy('year', 'month') \
.parquet(os.path.join(output_data, 'songplays'), \
mode='overwrite')
def main():
"""Create Spark session, extract songs and log data from S3, transform them into dimensional tables, and load them back to S3 in Parquet format
"""
spark = create_spark_session()
input_data = "s3://udacity-dend/"
output_data = "s3://spark-space/sparkify/output/"
process_song_data(spark, input_data, output_data)
process_log_data(spark, input_data, output_data)
if __name__ == "__main__":
main()