-
Notifications
You must be signed in to change notification settings - Fork 339
/
Copy pathfootandball.py
229 lines (181 loc) · 6.34 KB
/
footandball.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import sys
import time
import numpy as np
import cv2
import ailia
# import original modules
sys.path.append('../../util')
from arg_utils import get_base_parser, update_parser, get_savepath
from model_utils import check_and_download_models
from detector_utils import load_image
from webcamera_utils import get_capture, get_writer
# logger
from logging import getLogger
logger = getLogger(__name__)
from footandball_utils import *
# ======================
# Parameters
# ======================
WEIGHT_PATH = 'footandball.onnx'
MODEL_PATH = 'footandball.onnx.prototxt'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/footandball/'
IMAGE_PATH = 'input.jpg'
SAVE_IMAGE_PATH = 'output.png'
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'FootAndBall', IMAGE_PATH, SAVE_IMAGE_PATH
)
parser.add_argument(
'--onnx',
action='store_true',
help='execute onnxruntime version.'
)
parser.add_argument(
'-pth', '--player_threshold',
default=0.7, type=float,
help='player confidence threshold'
)
parser.add_argument(
'-bth', '--ball_threshold',
default=0.7, type=float,
help='ball confidence threshold'
)
#parser.add_argument(
# '-bbs', '--ball_bbox_size',
# default=40, type=int,
# help='size of ball binding box'
#)
args = update_parser(parser)
args.ball_bbox_size = 40
# ======================
# Main functions
# ======================
def draw_bboxes(image, detections):
font = cv2.FONT_HERSHEY_SIMPLEX
for box, label, score in zip(detections['boxes'], detections['labels'], detections['scores']):
if label == PLAYER_LABEL:
x1, y1, x2, y2 = box
color = (255, 0, 0)
cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
cv2.putText(image, '{:0.2f}'.format(score), (int(x1), max(0, int(y1)-10)),
font, 1, color, 2)
elif label == BALL_LABEL:
x1, y1, x2, y2 = box
x = int((x1 + x2) / 2)
y = int((y1 + y2) / 2)
color = (0, 0, 255)
radius = 25
cv2.circle(image, (int(x), int(y)), radius, color, 2)
cv2.putText(image, '{:0.2f}'.format(score), (max(0, int(x - radius)), max(0, (y - radius - 10))),
font, 1, color, 2)
return image
def predict(net, img):
img = numpy2tensor(img)
img = img[np.newaxis, :, :, :]
# feedforward
if not args.onnx:
output = net.run(img)
else:
output = net.run([
net.get_outputs()[0].name,
net.get_outputs()[1].name,
net.get_outputs()[2].name
], {
net.get_inputs()[0].name: img,
})
player_feature_map, player_bbox, ball_feature_map = output[0], output[1], output[2]
output = detect(player_feature_map, player_bbox, ball_feature_map,
player_threshold=args.player_threshold,
ball_threshold=args.ball_threshold,
ball_bbox_size=args.ball_bbox_size)
output = output[0]
return output
def recognize_from_image(net):
# input image loop
for image_path in args.input:
logger.info(image_path)
# prepare input data
img = load_image(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
total_time_estimation = 0
for i in range(args.benchmark_count):
start = int(round(time.time() * 1000))
detections = predict(net, img)
end = int(round(time.time() * 1000))
estimation_time = (end - start)
# Logging
logger.info(f'\tailia processing estimation time {estimation_time} ms')
if i != 0:
total_time_estimation = total_time_estimation + estimation_time
logger.info(f'\taverage time estimation {total_time_estimation / (args.benchmark_count - 1)} ms')
else:
detections = predict(net, img)
# draw
img = draw_bboxes(img, detections)
# plot result
savepath = get_savepath(args.savepath, image_path, ext='.png')
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, img)
logger.info('Script finished successfully.')
def recognize_from_video(net):
video_file = args.video if args.video else args.input[0]
capture = get_capture(video_file)
n_frames = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
assert capture.isOpened(), 'Cannot capture source'
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
fps = capture.get(cv2.CAP_PROP_FPS)
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
writer = get_writer(args.savepath, f_h, f_w, fps=fps)
else:
writer = None
i=0
frame_shown = False
while True:
i += 1
if i%50==0:
logger.info('{} frames have been processed.'.format(i))
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
# inference
detections = predict(net, frame)
# draw
frame = draw_bboxes(frame, detections)
# show
cv2.imshow("frame", frame)
# save results
if writer is not None:
res_img = frame
res_img = res_img.astype(np.uint8)
writer.write(res_img)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
env_id = args.env_id
# initialize
if not args.onnx:
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=env_id)
else:
import onnxruntime
net = onnxruntime.InferenceSession(WEIGHT_PATH, providers = ["CPUExecutionProvider", "CUDAExecutionProvider"])
if args.video is not None:
recognize_from_video(net)
else:
recognize_from_image(net)
if __name__ == '__main__':
main()