-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtrain.py
171 lines (145 loc) · 6.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import argparse
import json
import multiprocessing
import torch
import torch.nn.functional as F
from sklearn.metrics import roc_auc_score, accuracy_score
from dl_utils.dataset import PMDataset_torch
from dl_utils.stratified_sampler import StratifiedSampler
from dl_utils.network import Network
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
def parse_args():
parser = argparse.ArgumentParser(description='FPM args')
parser.add_argument('--train_input_filename', type=str, default="../data/processed/train_dataset.csv",
help='input path of the data, default: "../data/processed/train_dataset.csv"')
parser.add_argument('--test_input_filename', type=str, default="../data/processed/test_dataset.csv",
help='input path of the data, default: "../data/processed/test_dataset.csv"')
parser.add_argument('--output_path', type=str, default="../output",
help='output to store model artefacts, default: "../output"')
parser.add_argument('--sensor_headers', type=str, default=json.dumps(["voltage", "current"]),
help='sensors headers in the dataset, default: {}'.format(json.dumps(["voltage", "current"])))
parser.add_argument('--target_column', type=str, default="target",
help='name of the target in the dataset, default: target')
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate, default: 0.001')
parser.add_argument('--epochs', type=int, default=200,
help='epochs, default: 200')
parser.add_argument('--batch_size', type=int, default=128,
help='batch_size, default: 128')
parser.add_argument('--dropout', type=float, default=0.0,
help='drop out, default: 0.0')
parser.add_argument('--fc_hidden_units', type=str, default="[256, 128]",
help="Hidden units, default \"[256, 128]\"")
parser.add_argument('--conv_channels', type=str, default="[2, 8, 2]",
help="Conv channels, default \"[2, 8, 2]\"")
args = parser.parse_args()
return args
def run_epoch(net, dl, optimizer, critereon, is_train):
if is_train:
net.train()
else:
net.eval()
total_loss = 0.0
total_acc = 0.0
total_auc = 0.0
N = 0
for data, label in dl:
if use_cuda:
data = data.to(device).float()
label = label.to(device).long()
else:
data = data.float()
label = label.long()
out = net(data)
loss = critereon(out, label)
optimizer.zero_grad()
if is_train:
loss.backward()
optimizer.step()
total_loss += loss.item()
predict = out.cpu().detach().numpy()[:, 1]
total_acc += accuracy_score(label.cpu().detach().numpy(), predict>0.5)
total_auc += roc_auc_score(label.cpu().detach().numpy(), predict)
N += 1
return total_loss/N, total_acc/N, total_auc/N
def run():
torch.backends.cudnn.enabled = False
if "SM_HPS" in os.environ:
is_sm_mode = True
else:
is_sm_mode = False
args = parse_args()
assert len(json.loads(args.sensor_headers)) == json.loads(args.conv_channels)[-1], "The last conv filter must be equal the the number of sensor_headers"
if 'SM_CHANNEL_TRAIN' in os.environ:
train_path = os.path.join(
os.environ['SM_CHANNEL_TRAIN'],
os.path.basename(args.train_input_filename))
else:
train_path = args.train_input_filename
if 'SM_CHANNEL_TRAIN' in os.environ:
test_path = os.path.join(
os.environ['SM_CHANNEL_TEST'],
os.path.basename(args.test_input_filename))
else:
test_path = args.test_input_filename
if 'SM_OUTPUT_DATA_DIR' in os.environ:
output_path = os.environ['SM_OUTPUT_DATA_DIR']
output_path = os.path.join(output_path, "output")
else:
output_path = args.output_path
if not os.path.isdir(output_path):
os.mkdir(output_path)
train_ds = PMDataset_torch(
train_path,
target_column=args.target_column,
standardize=True,
sensor_headers=json.loads(args.sensor_headers))
test_ds = PMDataset_torch(
test_path,
target_column=args.target_column,
standardize=True,
sensor_headers=json.loads(args.sensor_headers))
batch_size = args.batch_size
class_labels = torch.tensor(train_ds.labels)
ss = StratifiedSampler(class_labels, batch_size)
train_dl = torch.utils.data.DataLoader(
train_ds,
batch_size,
num_workers=multiprocessing.cpu_count()-1,
shuffle=False,
sampler=ss)
test_dl = torch.utils.data.DataLoader(test_ds, batch_size, shuffle=True)
net = Network(num_features=len(json.loads(args.sensor_headers)),
fc_hidden_units=json.loads(args.fc_hidden_units),
conv_channels=json.loads(args.conv_channels),
dropout_strength=args.dropout)
net = net.to(device)
optimizer = torch.optim.Adam(net.parameters(), lr=args.lr)
critereon = torch.nn.CrossEntropyLoss()
for e in range(args.epochs):
train_loss, train_acc, train_auc = run_epoch(net, train_dl, optimizer,
critereon, is_train=True)
test_loss, test_acc, test_auc = run_epoch(net, test_dl, optimizer,
critereon, is_train=False)
if is_sm_mode:
print("Epoch: {}".format(e))
print("Train loss: {:0.4f}".format(train_loss))
print("Train acc: {:0.4f}".format(train_acc))
print("Train auc: {:0.4f}".format(train_auc))
print("Test loss: {:0.4f}".format(test_loss))
print("Test acc: {:0.4f}".format(test_acc))
print("Test auc: {:0.4f}".format(test_auc))
else:
print("{} train loss: {:0.4f} acc {:0.4f} auc {:0.4f}|".format(e, train_loss, train_acc, train_auc), end="")
print("test loss {:0.4f} acc {:0.4f} auc {:0.4f}".format(test_loss, test_acc, test_auc))
if e % 20 == 0:
torch.save(
{"net": net.state_dict(),
"sensor_headers": json.loads(args.sensor_headers),
"fc_hidden_units": json.loads(args.fc_hidden_units),
"conv_channels": json.loads(args.conv_channels)},
os.path.join(output_path, "net.pth"))
if __name__ == "__main__":
run()