-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsolvers.m
399 lines (339 loc) · 11.5 KB
/
solvers.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
%% Collection of Solvers
% Author: Auralius Manurung, ME, Universitas Pertamina,
%
% For an ODE: $\dot{y}(t,y) = f(t,y)$ The solution takes a form of
% $y(t)=\dots$
%
%% Test 1 : A very stiff system
disp('Running Test 1 ...')
[ta, ya] = feuler(@myode1, 1, 0, 0.02, 0.001);
[tb, yb] = rk4(@myode1, 1, 0, 0.02, 0.001);
[tc, yc] = rk38(@myode1, 1, 0, 0.02, 0.001);
[td, yd] = heun(@myode1, 1, 0, 0.02, 0.001);
[te, ye] = dormandprince(@myode1, 1, 0, 0.02, 0.001, 1e-9);
[tf, yf] = rkf45(@myode1, 1, 0, 0.02, 0.001, 1e-9);
[tg, yg] = beuler(@myode1, 1, 0, 0.02, 0.001);
figure
hold on
plot(ta, ya, 'b')
plot(tb, yb, 'r')
plot(tc, yc, 'm')
plot(td, yd, 'k')
plot(te, ye, 'g')
plot(tf, yf, 'c')
plot(tg, yg, 'y')
legend('Forward Euler', 'RK4', 'RK3/8', 'Heun', 'Dormand-Prince', ...
'RKF45', 'Backward Euler', 'Location', 'Best');
title('Stiff ODE, $\dot{y} = -1000y$', 'interpreter', 'latex');
%% Test 2 : Lorenz dynamics
disp('Running Test 2 ...')
[ta, ya] = feuler(@myode2, [1 1 1]', 0, 20, 0.001);
[tb, yb] = rk4(@myode2, [1 1 1]', 0, 20, 0.001);
[tc, yc] = rk38(@myode2, [1 1 1]', 0, 20, 0.001);
[td, yd] = heun(@myode2, [1 1 1]', 0, 20, 0.001);
[te, ye] = dormandprince(@myode2, [1 1 1], 0, 20, 0.001, 1e-9);
[tf, yf] = rkf45(@myode2, [1 1 1], 0, 20, 0.001, 1e-9);
[tg, yg] = beuler(@myode2, [1 1 1]', 0, 20, 0.001);
figure
hold on
plot3(ya(1,:), ya(2,:), ya(3,:), 'b');
plot3(yb(1,:), yb(2,:), yb(3,:), 'r');
plot3(yc(1,:), yc(2,:), yc(3,:), 'm');
plot3(yd(1,:), yd(2,:), yd(3,:), 'k');
plot3(ye(1,:), ye(2,:), ye(3,:), 'g');
plot3(yf(1,:), yf(2,:), yf(3,:), 'c');
plot3(yg(1,:), yg(2,:), yg(3,:), 'y');
legend('Forward Euler', 'RK4', 'RK3/8', 'Heun', 'Dormand-Prince', ...
'RKF45', 'Backward Euler', 'Location', 'Best');
title('Lorenz, $\sigma = 10, \beta = 8/3, \rho = 28$', 'interpreter', 'latex');
%% Test 3 : Van der Pol oscillator
disp('Running Test 3 ...')
[ta, ya] = feuler(@myode3, [2 0]', 0, 1000, 0.001);
[tb, yb] = rk4(@myode3, [2 0]', 0, 1000, 0.001);
[tc, yc] = rk38(@myode3, [2 0]', 0, 1000, 0.001);
[td, yd] = heun(@myode3, [2 0]', 0, 1000, 0.001);
[te, ye] = dormandprince(@myode3, [2 0]', 0, 1000, 0.001, 1e-9);
[tf, yf] = rkf45(@myode3, [2 0]', 0, 1000, 0.001, 1e-9);
[tg, yg] = beuler(@myode3, [2 0]', 0, 1000, 0.001);
figure
hold on
plot(ya(1,:), ya(2,:), 'b');
plot(yb(1,:), yb(2,:), 'r');
plot(yc(1,:), yc(2,:), 'm');
plot(yd(1,:), yd(2,:), 'k');
plot(ye(1,:), ye(2,:), 'g');
plot(yf(1,:), yf(2,:), 'c');
plot(yg(1,:), yg(2,:), 'y');
legend('Forward Euler', 'RK4', 'RK3/8', 'Heun', 'Dormand-Prince', ...
'RKF45', 'Backward Euler', 'Location', 'Best');
title('Van der Pol, $\mu = 100$', 'interpreter', 'latex');
%% Test 4 : A simple sine wave
disp('Running Test 4 ...')
[ta, ya] = feuler(@myode4, -1, 0, 10, 0.001);
[tb, yb] = rk4(@myode4, -1, 0, 10, 0.001);
[tc, yc] = rk38(@myode4, -1, 0, 10, 0.001);
[td, yd] = heun(@myode4, -1, 0, 10, 0.001);
[te, ye] = dormandprince(@myode4, -1, 0, 10, 0.001, 1e-9);
[tf, yf] = rkf45(@myode4, -1, 0, 10, 0.001, 1e-9);
[tg, yg] = beuler(@myode4, -1, 0, 10, 0.001);
figure
hold on
plot(ta, ya, 'b');
plot(tb, yb, 'r');
plot(tc, yc, 'm');
plot(td, yd, 'k');
plot(te, ye, 'g');
plot(tf, yf, 'c');
plot(tg, yg, 'y')
legend('Forward Euler', 'RK4', 'RK3/8', 'Heun', 'Dormand-Prince', ...
'RKF45', 'Backward Euler', 'Location', 'Best');
title('$\dot{y} = y * sin(t)$', 'interpreter', 'latex');
%% Test 5 : A special test to compare Forward Euler and Backward Euler
% The test is taken from
% <https://web.mit.edu/10.001/Web/Course_Notes/Differential_Equations_Notes/node3.html>
% Forward Euler becomes unstable when $h>0.2$. Backward
% Euler is unconditionally stable.
%
disp('Running Test 5 ...')
h = [0.2 0.1 0.05 0.01 0.001];
figure
hold on
for k = 1 : length(h)
[t, y] = feuler(@myode5, 1, 0, 3, h(k));
plot(t, y)
end
legend(num2str(h), 'Location', 'best');
title ('Forward Euler for $\dot{y} = -10y$', 'interpreter', 'latex')
figure
hold on
for k = 1 : length(h)
[t, y] = beuler(@myode5, 1, 0, 3, h(k));
plot(t, y)
end
legend(num2str(h), 'Location', 'best');
title ('Backward Euler for $\dot{y} = -10y$', 'interpreter', 'latex')
%% Some ODES that we can use to test the solvers
% ------ A very stiff ODE ------
function ydot = myode1(t,y)
ydot = -1000*y;
end
% ------ Lorenz dynamics ------
function ydot = myode2(t,y)
sigma = 10;
beta = 8/3;
rho = 28;
ydot = [sigma * (y(2) - y(1));
y(1) * (rho - y(3)) - y(2);
y(1) * y(2) - beta * y(3)];
end
% ------ Van der Pol oscillator ------
function ydot = myode3(t,y)
Mu = 100;
ydot = [y(2); Mu*(1-y(1)^2)*y(2)-y(1)];
end
% ------ A simple sine wave ------
function ydot = myode4(t,y)
ydot = y*sin(t);
end
% ------ An ODE wih a decaying solution ------
function ydot = myode5(t,y)
ydot = -10*y;
end
% --------------------------------------------
%% Forward Euler method
function [t, y] = feuler(odefun, ... % The ODE function
y0, ... % Initial states
ts, ... % Start time
tf, ... % End time
h) % Step time
t = ts:h:tf;
y = zeros(length(y0),length(t));
y(:,1) = y0;
for k = 2 : length(t)
ydot = odefun(t(k), y(:,k-1));
y(:,k) = y(:,k-1)+ydot.*h;
end
end
%% Fourth oder Runge-Kutta
function [t, y] = rk4(odefun, ... % The ODE function
y0, ... % Initial states
ts, ... % Start time
tf, ... % End time
h) % Step time
t = ts:h:tf;
y = zeros(length(y0),length(t));
y(:,1) = y0;
for k = 2 : length(t)
yn = y(:,k-1);
tn = t(k-1);
k1 = h * odefun(tn, yn);
k2 = h * odefun(tn + h / 2 , yn + k1 / 2);
k3 = h * odefun(tn + h / 2, yn + k2 / 2);
k4 = h * odefun(tn + h, yn + k3);
y(:,k) = yn + k1 / 6 + k2 / 3 + k3 / 3 + k4 / 6;
end
end
%% Runge-Kutta 3/8 method
function [t, y] = rk38(odefun, ... % The ODE function
y0, ... % Initial states
ts, ... % Start time
tf, ... % End time
h) % Step time
t = ts:h:tf;
y = zeros(length(y0),length(t));
y(:,1) = y0;
for k = 2 : length(t)
yn = y(:,k-1);
tn = t(k-1);
k1 = h * odefun(tn, yn);
k2 = h * odefun(tn + h / 3, yn + k1 / 3);
k3 = h * odefun(tn + h * 2 / 3, yn + - k1 / 3 + k2);
k4 = h * odefun(tn + h, yn + k1 - k2 + k3);
y(:,k) = yn + 1 / 8 * k1 + 3 / 8 * k2 + 3 / 8 * k3 + 1 / 8 * k4;
end
end
%% Heun's method
function [t, y] = heun(odefun, ... % The ODE function
y0, ... % Initial states
ts, ... % Start time
tf, ... % End time
h) % Step time
t = ts:h:tf;
y = zeros(length(y0),length(t));
y(:,1) = y0;
for k = 2 : length(t)
yn = y(:,k-1);
tn = t(k-1);
k1 = h * odefun(tn, yn);
k2 = h * odefun(tn + h, yn + k1);
y(:,k) = yn + 1 / 2 * k1 + 1 / 2 * k2;
end
end
%% Dormand-prince method
% This is an adaptive method with variable time step
%
function [t, y] = dormandprince(odefun, ... % The ODE function
y0, ... % Initial states
ts, ... % Start time
tf, ... % End time
h, ... % Step time
TOL) % Local error tollerance
y(:,1) = y0;
k = 2;
t = ts;
while t < tf
yn = y(:,k-1);
tn = t(k-1);
k1 = h * odefun(tn, yn);
k2 = h * odefun(tn+h/5, yn+k1/5);
k3 = h * odefun(tn+h*3/10, yn+k1*3/40 + k2*9/40);
k4 = h * odefun(tn+h*4/5, yn + k1*44/45 - k2*56/15 + k3*32/9);
k5 = h * odefun(tn+h*8/9, yn + k1*19372/6561 - k2*25360/2187 + ...
k3*64448/6561 - k4*212/729);
k6 = h * odefun(tn+h, yn + k1*9017/3168 - k2*355/33 + ...
k3*46732/5247 + k4*49/176 - k5*5103/18656);
k7 = h * odefun(tn+h, yn + k1*35/384 + k3*500/1113 + k4*125/192 - ...
k5*2187/6784 + k6*11/84);
Y = yn + 35/384*k1 + 500/1113*k3 + 125/192*k4 - 2187/6784*k5 + ...
11/84*k6;
Z = yn + 5179/57600*k1 + 7571/16695*k3 + 393/640*k4 - ...
92097/339200*k5 + 187/2100*k6 + 1/40*k7;
E = norm(Y-Z); % local error estimation
h = 0.9 * h * (TOL/E)^(1/5);
y(:,k) = Y;
t(k) = t(k-1) + h;
k = k + 1;
end
end
%% Runge-Kutta-Fehlberg method (RKF45)
% This is an adaptive method with variable time step.
%
function [t, y] = rkf45(odefun, ... % The ODE function
y0, ... % Initial states
ts, ... % Start time
tf, ... % End time
h, ... % Step time
TOL) % Local error tollerance
y(:,1) = y0;
k = 2;
t = ts;
while t < tf
yn = y(:,k-1);
tn = t(k-1);
k1 = h * odefun(tn, yn);
k2 = h * odefun(tn+h/4, yn+k1/4);
k3 = h * odefun(tn+h*3/8, yn+k1*3/32 + k2*9/32);
k4 = h * odefun(tn+h*12/13, yn + k1*1932/2197 - k2*7200/2197 + ...
k3*7296/2197);
k5 = h * odefun(tn+h, yn + k1*439/216 - 8*k2 + k3*3680/513 - ...
k4*845/4104);
k6 = h * odefun(tn+h/2, yn - k1*8/27 + k2*2 - k3*3544/2565 + ...
k4*1859/4104 - k5*11/40);
Y = yn + 25/216*k1 + 1408/2565*k3 + 2197/4104*k4 - 1/5*k5;
Z = yn + 16/135*k1 + 6656/12825*k3 + 28561/56430*k4 - 9/50*k5 + ...
2/55*k6;
E = norm(Y-Z); % local error estimation
h = 0.9 * h * (TOL/E)^(1/5);
y(:,k) = Y;
t(k) = t(k-1) + h;
k = k + 1;
end
end
%% Backward Euler method
function [t, y] = beuler(odefun, ... % The ODE function
y0, ... % Initial states
ts, ... % Start time
tf, ... % End time
h, ... % Step time
TOL, ... % Tollerance for Newton's method
MAX_ITER) % Max iterations for Newton's method
if nargin < 6
TOL = 0.0001;
MAX_ITER = 1000;
elseif nargin < 7
MAX_ITER = 1000;
end
t = ts:h:tf;
y = zeros(length(y0),length(t));
I = eye(length(y0));
y(:,1) = y0;
for k = 1 : length(t)-1
y1 = y(:,k);
F = build_F(odefun, t(k), y(:,k), y1, h);
y2 = y1 - (I-h*Jacobian(odefun, t(k), y1)) \ F;
n_iterations = 1;
while (norm(y2-y1) > TOL && n_iterations < MAX_ITER)
y1 = y2;
F = build_F(odefun, t(k), y(:,k), y1, h);
y2 = y1 - (I-h*Jacobian(odefun, t(k), y1)) \ F;
n_iterations = n_iterations + 1;
end
y(:,k+1) = y2;
end
end
% -------------------------------------------------------------------------
% Build the equation: F = 0
% -------------------------------------------------------------------------
function F = build_F(f, t, y1, y2, h)
F = y2 - y1 - h*f(t, y2);
end
% -------------------------------------------------------------------------
% Calculate Jacobian of function f at given x
% Complex-Step Derivative Approximation (CSDA) Method
% See: https://github.com/auralius/numerical-jacobian
% -------------------------------------------------------------------------
function DF = Jacobian(f, t, x, epsilon)
if nargin < 4
epsilon = 1e-5;
end
epsilon_inv = 1/epsilon;
nx = length(x); % Dimension of the input x;
% Do perturbation
for k = 1 : nx
xplus = x;
xplus(k) = x(k) + 1i*epsilon;
DF(:, k) = imag(f(t, xplus)) .* epsilon_inv;
end
end
% ------------------------------------------------------------------------