-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdash_app.py
311 lines (274 loc) · 10.4 KB
/
dash_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from dash import Output, Input, html, State, MATCH, ALL, dcc, Dash, callback_context
from dash.exceptions import PreventUpdate
import pandas as pd
import dash_bootstrap_components as dbc
from EmojiFinder import EmojiFinderSql, SKIN_TONE_SUFFIXES
from emoji import demojize, is_emoji
from ducklive import LiveSearch
from pathlib import Path
parent_dir = Path().absolute().stem
e = EmojiFinderSql(db_name='all-mpnet-base-v2_main.db')
d = LiveSearch(model_path='minilm-v6.gguf')
app = Dash(
__name__,
url_base_pathname=f'/dash/{parent_dir}/',
external_stylesheets=[dbc.themes.BOOTSTRAP, dbc.icons.BOOTSTRAP],
title='Emoji Semantic Search',
meta_tags=[
{'name': 'viewport', 'content': 'width=device-width, initial-scale=1'},
],
)
server = app.server
STYLE = {'marginBottom': 20, 'marginTop': 20, 'width': '85%'}
range_slider = html.Div(
[
dbc.Label('Font Size', html_for='font-size-slider'),
dcc.Slider(id='font-size-slider', min=1, max=4, step=0.5, value=3, persistence=True),
],
className='mb-3',
)
def make_tone_options(x):
emoji = e.new_emoji_dict(f':clapping_hands_{x}:')['emoji']
no_punctuation = x.replace('_', ' ').replace('-', ' ')
res = f'{emoji} {no_punctuation.title()}'
return res
tab1_content = dbc.Container(
children=[
html.H3('Emoji Semantic Search', style={'text-align': 'center'}),
html.Div(
[
dbc.InputGroup(
[
dbc.InputGroupText(
html.I(className='bi bi-search', style={'float': 'left'})
),
dbc.Input(
id='search-input',
value='',
debounce=True,
autofocus=True,
placeholder='Search terms can be a word, phrase, or sentence. Or try an emoji like 🎟️.',
),
],
style=STYLE,
),
dbc.Button(
'Settings',
id='expand-prefs',
class_name='me-1',
color='secondary',
size='sm',
style={'margin-top': '20px', 'margin-bottom': '20px'},
),
],
style={
'display': 'flex',
'gap': '20px',
},
),
dbc.Collapse(
[
range_slider,
dcc.Dropdown(
id='skin-tone',
options=[
{'label': make_tone_options(x), 'value': x} for x in SKIN_TONE_SUFFIXES
],
persistence=True,
placeholder='Skin Tone search priority...',
),
dcc.Dropdown(
id='gender',
options=['man', 'woman', 'person'],
persistence=True,
placeholder='Gender search priority...',
),
],
id='search-priorities',
is_open=False,
),
dcc.Markdown(
'Source code and more info on [Github](https://github.com/astrowonk/emoji_finder). Mac users may want to try the [Launchbar Action](https://github.com/astrowonk/Emoji-Semantic-Search-LaunchBar-Action).'
),
html.Div(id='results'),
],
style=STYLE,
)
tab2_content = dbc.Row(
[
dbc.Col(
dcc.Graph(
id='my-graph',
style={
# 'width': '120vh',
'height': '80vh'
},
)
),
dbc.Col(
html.Div(
id='emoji-result',
style={
'top': '50%',
'transform': 'translateY(-50%)',
'position': 'absolute',
},
),
width=1,
),
]
)
tab3_content = dcc.Markdown(
"""
Source code for this app and underlying modules in the [github repository](https://github.com/astrowonk/emoji_finder).
Inspired ([nerd sniped?](https://xkcd.com/356/)) by [this post](https://data-folks.masto.host/@archie/109543055657581394) on Mastodon, I made this Semantic Emoji Finder. So, you can search for `flower`, and also get `bouquet` 💐, and `cherry blossom` 🌸. (The iOS emoji keyboard does something similar, but this remains unavailable on MacOS.)
I'm using the python `sentence_tranformers` [package available from SBERT](https://www.sbert.net/index.html). This has a variety of [pretrained models suitable](https://www.sbert.net/docs/pretrained_models.htm) for the task of finding a semantic match between a search term and a target. I'm using the `all-mpnet-base-v2` model for the web apps.
In order to get this to run in a low memory environment of a web host, I *precompute semantic distance* against a corpus of common english words from [GloVe](https://nlp.stanford.edu/projects/glove/). This has the benefit of running with low memory on the web without pytorch, but the search only works for one-word searches.
**February 2024 Update**: Thanks to llama.cpp and vector support in duckdb, I was able to [add multi-word search](https://github.com/astrowonk/emoji_finder/pull/7). I can now generate new embeddings with llama.cpp for a query, and use the result to query duckdb to find the most similar emojis. This runs only if the one-word pre-computed search returns no results.
**September 2024 Update**: Now includes emoji through Version 15.1**
""",
style=STYLE,
)
tabs = dbc.Tabs(
[
dbc.Tab(tab1_content, label='Search', tab_id='search-tab'),
# dbc.Tab(tab2_content, label='Graph', tab_id='graph-tab'),
dbc.Tab(tab3_content, label='About'),
],
active_tab='search-tab',
)
app.layout = dbc.Container(tabs, style=STYLE)
def wrap_emoji(record, font_size):
return html.Div(
[
html.Div(
record['emoji'],
id=record['text'],
style={'font-size': f'{font_size}em'},
className='emoji',
),
dcc.Clipboard(
target_id=record['text'],
style={
'margin-left': '.75em',
# 'padding-bottom': '1em',
# 'position': 'relative',
# 'margin': 'auto'
},
className='emoji',
),
dbc.Tooltip(record['label'], target=record['text']),
],
)
def make_cell(item, skin_tone, gender, font_size):
if not skin_tone:
skin_tone = ''
if not gender:
gender = ''
additional_emojis = e.sql_add_variants(item['label'])
additional_emojis = [
{
'emoji': e.new_emoji_dict(x)['emoji'],
'text': e.new_emoji_dict(x)['text'],
'label': x,
}
for x in additional_emojis
]
priority_result = []
gender_result = []
if skin_tone:
priority_result = [x for x in additional_emojis if skin_tone in x['label']]
if gender:
gender_result = [
x
for x in priority_result or additional_emojis
if x['label'].startswith(':' + gender)
]
if gender_result:
priority_result = gender_result
if priority_result:
priority_result = priority_result[0]
additional_emojis.remove(priority_result)
target = priority_result
else:
target = item
if additional_emojis:
return [
html.Div(
[
wrap_emoji(target, font_size),
dbc.Button(
'More',
id={'type': 'more-button', 'index': item['text']},
className='me-1',
size='sm',
outline=True,
color='dark',
),
],
),
dbc.Collapse(
[wrap_emoji(item, font_size) for item in additional_emojis],
id={'type': 'more-emojis', 'index': item['text']},
is_open=False,
),
]
return wrap_emoji(item, font_size=font_size)
def make_table_row(record, skin_tone, gender, font_size):
return html.Tr(
[
html.Td(record['text'].title(), style={'margin': 'auto'}),
html.Td(make_cell(record, skin_tone, gender, font_size), style={'margin': 'auto'}),
],
style={'margin': 'auto'},
)
@app.callback(
Output('results', 'children'),
Input('search-input', 'value'),
Input('skin-tone', 'value'),
Input('gender', 'value'),
Input('font-size-slider', 'value'),
)
def search_results(search, skin_tone, gender, font_size):
if not search:
return html.H3('No Results')
if len(search) > 400 or len(search.split()) > 60:
return html.H3('Search query exceeds 400 characters or 60 words.')
if is_emoji(search):
search = demojize(search)
if base_emoji := e.new_emoji_dict(search).get('text'):
search = base_emoji
full_res = e.top_emojis(search)
if full_res.empty:
print('No precomputed results. Using DuckLive')
full_res = d.get_emoji(search)
if full_res.empty: # if it's still somehow empty
return html.H3('No Results')
full_res = full_res.drop_duplicates(subset=['label'])
table_header = [html.Thead(html.Tr([html.Th('Description'), html.Th('Emoji')]))]
table_rows = [
make_table_row(rec, skin_tone, gender, font_size)
for rec in full_res.to_dict('records')
]
table_body = [html.Tbody(table_rows)]
return dbc.Table(table_header + table_body, bordered=False, striped=True)
@app.callback(
Output({'type': 'more-emojis', 'index': MATCH}, 'is_open'),
State({'type': 'more-emojis', 'index': MATCH}, 'is_open'),
Input({'type': 'more-button', 'index': MATCH}, 'n_clicks'),
)
def button_action(state, n_clicks):
if not n_clicks:
raise PreventUpdate
return not state
@app.callback(
Output('search-priorities', 'is_open'),
State('search-priorities', 'is_open'),
Input('expand-prefs', 'n_clicks'),
)
def button_action(state, n_clicks):
if not n_clicks:
raise PreventUpdate
return not state
if __name__ == '__main__':
app.run_server(debug=True)