forked from Azure/azureml-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatch-score.sh
255 lines (216 loc) · 8.17 KB
/
batch-score.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
az --version
set -e
# <set_variables>
export ENDPOINT_NAME="<YOUR_ENDPOINT_NAME>"
export DEPLOYMENT_NAME="<YOUR_DEPLOYMENT_NAME>"
# </set_variables>
export ENDPOINT_NAME=endpt-`echo $RANDOM`
export DEPLOYMENT_NAME="mnist-torch-dpl"
echo "Creating compute"
# <create_compute>
az ml compute create -n batch-cluster --type amlcompute --min-instances 0 --max-instances 5
# </create_compute>
echo "Creating batch endpoint $ENDPOINT_NAME"
# <create_batch_endpoint>
az ml batch-endpoint create --name $ENDPOINT_NAME
# </create_batch_endpoint>
echo "Creating batch deployment nonmlflowdp for endpoint $ENDPOINT_NAME"
# <create_batch_deployment_set_default>
az ml batch-deployment create --file endpoints/batch/deploy-models/mnist-classifier/deployment-torch/deployment.yml --endpoint-name $ENDPOINT_NAME --set-default
# </create_batch_deployment_set_default>
echo "Showing details of the batch endpoint"
# <check_batch_endpooint_detail>
az ml batch-endpoint show --name $ENDPOINT_NAME
# </check_batch_endpooint_detail>
echo "Showing details of the batch deployment"
# <check_batch_deployment_detail>
az ml batch-deployment show --name $DEPLOYMENT_NAME --endpoint-name $ENDPOINT_NAME
# </check_batch_deployment_detail>
sleep 60
echo "Invoking batch endpoint with public URI (MNIST)"
# <start_batch_scoring_job>
JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/mnist/sample --input-type uri_folder --query name -o tsv)
# </start_batch_scoring_job>
echo "Showing job detail"
# <show_job_in_studio>
az ml job show -n $JOB_NAME --web
# </show_job_in_studio>
echo "Stream job logs to console"
# <stream_job_logs_to_console>
az ml job stream -n $JOB_NAME
# </stream_job_logs_to_console>
# <check_job_status>
STATUS=$(az ml job show -n $JOB_NAME --query status -o tsv)
echo $STATUS
if [[ $STATUS == "Completed" ]]
then
echo "Job completed"
elif [[ $STATUS == "Failed" ]]
then
echo "Job failed"
exit 1
else
echo "Job status not failed or completed"
exit 2
fi
# </check_job_status>
echo "Invoke batch endpoint with specific output file name"
# <start_batch_scoring_job_configure_output_settings>
export OUTPUT_FILE_NAME=predictions_`echo $RANDOM`.csv
JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/mnist/sample --input-type uri_folder --output-path azureml://datastores/workspaceblobstore/paths/$ENDPOINT_NAME --set output_file_name=$OUTPUT_FILE_NAME --query name -o tsv)
# </start_batch_scoring_job_configure_output_settings>
echo "Invoke batch endpoint with specific overwrites"
# <start_batch_scoring_job_overwrite>
export OUTPUT_FILE_NAME=predictions_`echo $RANDOM`.csv
JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/mnist/sample --input-type uri_folder --mini-batch-size 20 --instance-count 5 --query name -o tsv)
# </start_batch_scoring_job_overwrite>
echo "Stream job detail"
# <stream_job_logs_to_console>
az ml job stream -n $JOB_NAME
# </stream_job_logs_to_console>
# <check_job_status>
STATUS=$(az ml job show -n $JOB_NAME --query status -o tsv)
echo $STATUS
if [[ $STATUS == "Completed" ]]
then
echo "Job completed"
elif [[ $STATUS == "Failed" ]]
then
echo "Job failed"
exit 1
else
echo "Job status not failed or completed"
exit 2
fi
# </check_job_status>
echo "List all jobs under the batch deployment"
# <list_all_jobs>
az ml batch-deployment list-jobs --name $DEPLOYMENT_NAME --endpoint-name $ENDPOINT_NAME --query [].name
# </list_all_jobs>
echo "Create a new batch deployment (mnist-keras-dpl), not setting it as default this time"
# <create_new_deployment_not_default>
az ml batch-deployment create --file endpoints/batch/deploy-models/mnist-classifier/deployment-keras/deployment.yml --endpoint-name $ENDPOINT_NAME
# </create_new_deployment_not_default>
echo "Invoke batch endpoint with public data"
# <test_new_deployment>
DEPLOYMENT_NAME="mnist-keras-dpl"
JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --deployment-name $DEPLOYMENT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/mnist/sample --input-type uri_folder --query name -o tsv)
# </test_new_deployment>
echo "Show job detail"
# <show_job_in_studio>
az ml job show -n $JOB_NAME --web
# </show_job_in_studio>
echo "Stream job logs to console"
# <stream_job_logs_to_console>
az ml job stream -n $JOB_NAME
# </stream_job_logs_to_console>
# <check_job_status>
STATUS=$(az ml job show -n $JOB_NAME --query status -o tsv)
echo $STATUS
if [[ $STATUS == "Completed" ]]
then
echo "Job completed"
elif [[ $STATUS == "Failed" ]]
then
echo "Job failed"
exit 1
else
echo "Job status not failed or completed"
exit 2
fi
# </check_job_status>
echo "Update the batch deployment as default for the endpoint"
# <update_default_deployment>
az ml batch-endpoint update --name $ENDPOINT_NAME --set defaults.deployment_name=$DEPLOYMENT_NAME
# </update_default_deployment>
echo "Verify default deployment. In this example, it should be mlflowdp."
# <verify_default_deployment>
az ml batch-endpoint show --name $ENDPOINT_NAME --query "{Name:name, Defaults:defaults}"
# </verify_default_deployment>
echo "Invoke batch endpoint with the new default deployment with public URI"
# <test_new_default_deployment>
JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/mnist/sample --input-type uri_folder --query name -o tsv)
# </test_new_default_deployment>
echo "Stream job logs to console"
# <stream_job_logs_to_console>
az ml job stream -n $JOB_NAME
# </stream_job_logs_to_console>
# <check_job_status>
STATUS=$(az ml job show -n $JOB_NAME --query status -o tsv)
echo $STATUS
if [[ $STATUS == "Completed" ]]
then
echo "Job completed"
elif [[ $STATUS == "Failed" ]]
then
echo "Job failed"
exit 1
else
echo "Job status not failed or completed"
exit 2
fi
# </check_job_status>
echo "Get Scoring URI"
# <get_scoring_uri>
SCORING_URI=$(az ml batch-endpoint show --name $ENDPOINT_NAME --query scoring_uri -o tsv)
# </get_scoring_uri>
echo "Get Token"
# <get_token>
AUTH_TOKEN=$(az account get-access-token --resource https://ml.azure.com --query accessToken -o tsv)
# </get_token>
echo "Invoke batch endpoint with REST API call"
# <start_batch_scoring_job_rest>
RESPONSE=$(curl --location --request POST "$SCORING_URI" \
--header "Authorization: Bearer $AUTH_TOKEN" \
--header "Content-Type: application/json" \
--data-raw "{
\"properties\": {
\"dataset\": {
\"dataInputType\": \"DataUrl\",
\"Path\": \"https://azuremlexampledata.blob.core.windows.net/data/mnist/sample\"
}
}
}")
# </start_batch_scoring_job_rest>
# <check_job_status_rest>
# define how to wait
wait_for_completion () {
operation_id=$1
access_token=$2
status="unknown"
while [[ $status != "Completed" && $status != "Succeeded" && $status != "Failed" && $status != "Canceled" ]]
do
echo "Getting operation status from: $operation_id"
operation_result=$(curl --location --request GET $operation_id --header "Authorization: Bearer $access_token")
# TODO error handling here
status=$(echo $operation_result | jq -r '.status')
if [[ -z $status || $status == "null" ]]
then
status=$(echo $operation_result | jq -r '.properties.status')
fi
# Fail early if job submission failed and there is nothing to poll on
if [[ -z $status || $status == "null" ]]
then
echo "No status found on operation, setting to failed."
status="Failed"
fi
echo "Current operation status: $status"
sleep 10
done
if [[ $status == "Failed" ]]
then
error=$(echo $operation_result | jq -r '.error')
echo "Error: $error"
fi
}
# get job from invoke response and wait for completion
JOB_ID=$(echo $RESPONSE | jq -r '.id')
JOB_ID_SUFFIX=$(echo ${JOB_ID##/*/})
wait_for_completion $SCORING_URI/$JOB_ID_SUFFIX $AUTH_TOKEN
# </check_job_status_rest>
# <delete_deployment>
az ml batch-deployment delete --name nonmlflowdp --endpoint-name $ENDPOINT_NAME --yes
# </delete_deployment>
# <delete_endpoint>
az ml batch-endpoint delete --name $ENDPOINT_NAME --yes
# </delete_endpoint>