forked from murtazahassan/OpenCV-Sudoku-Solver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsudukoMain.py
88 lines (75 loc) · 3.44 KB
/
sudukoMain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
print('Setting UP')
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
from utlis import *
import sudukoSolver
########################################################################
pathImage = "Resources/1.jpg"
heightImg = 450
widthImg = 450
model = intializePredectionModel() # LOAD THE CNN MODEL
########################################################################
#### 1. PREPARE THE IMAGE
img = cv2.imread(pathImage)
img = cv2.resize(img, (widthImg, heightImg)) # RESIZE IMAGE TO MAKE IT A SQUARE IMAGE
imgBlank = np.zeros((heightImg, widthImg, 3), np.uint8) # CREATE A BLANK IMAGE FOR TESTING DEBUGING IF REQUIRED
imgThreshold = preProcess(img)
# #### 2. FIND ALL COUNTOURS
imgContours = img.copy() # COPY IMAGE FOR DISPLAY PURPOSES
imgBigContour = img.copy() # COPY IMAGE FOR DISPLAY PURPOSES
contours, hierarchy = cv2.findContours(imgThreshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # FIND ALL CONTOURS
cv2.drawContours(imgContours, contours, -1, (0, 255, 0), 3) # DRAW ALL DETECTED CONTOURS
#### 3. FIND THE BIGGEST COUNTOUR AND USE IT AS SUDOKU
biggest, maxArea = biggestContour(contours) # FIND THE BIGGEST CONTOUR
print(biggest)
if biggest.size != 0:
biggest = reorder(biggest)
print(biggest)
cv2.drawContours(imgBigContour, biggest, -1, (0, 0, 255), 25) # DRAW THE BIGGEST CONTOUR
pts1 = np.float32(biggest) # PREPARE POINTS FOR WARP
pts2 = np.float32([[0, 0],[widthImg, 0], [0, heightImg],[widthImg, heightImg]]) # PREPARE POINTS FOR WARP
matrix = cv2.getPerspectiveTransform(pts1, pts2) # GER
imgWarpColored = cv2.warpPerspective(img, matrix, (widthImg, heightImg))
imgDetectedDigits = imgBlank.copy()
imgWarpColored = cv2.cvtColor(imgWarpColored,cv2.COLOR_BGR2GRAY)
#### 4. SPLIT THE IMAGE AND FIND EACH DIGIT AVAILABLE
imgSolvedDigits = imgBlank.copy()
boxes = splitBoxes(imgWarpColored)
print(len(boxes))
# cv2.imshow("Sample",boxes[65])
numbers = getPredection(boxes, model)
print(numbers)
imgDetectedDigits = displayNumbers(imgDetectedDigits, numbers, color=(255, 0, 255))
numbers = np.asarray(numbers)
posArray = np.where(numbers > 0, 0, 1)
print(posArray)
#### 5. FIND SOLUTION OF THE BOARD
board = np.array_split(numbers,9)
print(board)
try:
sudukoSolver.solve(board)
except:
pass
print(board)
flatList = []
for sublist in board:
for item in sublist:
flatList.append(item)
solvedNumbers =flatList*posArray
imgSolvedDigits= displayNumbers(imgSolvedDigits,solvedNumbers)
# #### 6. OVERLAY SOLUTION
pts2 = np.float32(biggest) # PREPARE POINTS FOR WARP
pts1 = np.float32([[0, 0],[widthImg, 0], [0, heightImg],[widthImg, heightImg]]) # PREPARE POINTS FOR WARP
matrix = cv2.getPerspectiveTransform(pts1, pts2) # GER
imgInvWarpColored = img.copy()
imgInvWarpColored = cv2.warpPerspective(imgSolvedDigits, matrix, (widthImg, heightImg))
inv_perspective = cv2.addWeighted(imgInvWarpColored, 1, img, 0.5, 1)
imgDetectedDigits = drawGrid(imgDetectedDigits)
imgSolvedDigits = drawGrid(imgSolvedDigits)
imageArray = ([img,imgThreshold,imgContours, imgBigContour],
[imgDetectedDigits, imgSolvedDigits,imgInvWarpColored,inv_perspective])
stackedImage = stackImages(imageArray, 1)
cv2.imshow('Stacked Images', stackedImage)
else:
print("No Sudoku Found")
cv2.waitKey(0)