-
Notifications
You must be signed in to change notification settings - Fork 17
/
main.py
816 lines (699 loc) · 40.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
# Modified for DyTox by Arthur Douillard
import argparse
import copy
import datetime
import json
import os
import statistics
import time
import warnings
from pathlib import Path
import yaml
from continual.pod import _local_pod
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from continuum.metrics import Logger
from continuum.tasks import split_train_val
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.scheduler import create_scheduler
from timm.optim import create_optimizer
from continual.mixup import Mixup
import continual.utils as utils
from continual import factory, scaler
from continual.classifier import Classifier
from continual.rehearsal import Memory, get_finetuning_dataset
from continual.sam import SAM
from continual.datasets import build_dataset
from continual.engine import eval_and_log, train_one_epoch
from continual.losses import bce_with_logits, soft_bce_with_logits
warnings.filterwarnings("ignore")
def get_args_parser():
parser = argparse.ArgumentParser('DyTox training and evaluation script', add_help=False)
parser.add_argument('--batch-size', default=128, type=int)
parser.add_argument('--incremental-batch-size', default=None, type=int)
parser.add_argument('--epochs', default=500, type=int)
parser.add_argument('--base-epochs', default=500, type=int,
help='Number of epochs for base task')
parser.add_argument('--no-amp', default=False, action='store_true',
help='Disable mixed precision')
# Model parameters
parser.add_argument('--model', default='')
parser.add_argument('--input-size', default=32, type=int, help='images input size')
parser.add_argument('--patch-size', default=16, type=int)
parser.add_argument('--embed-dim', default=768, type=int)
parser.add_argument('--depth', default=12, type=int)
parser.add_argument('--num-heads', default=12, type=int)
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument('--norm', default='layer', choices=['layer', 'scale'],
help='Normalization layer type')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument("--incremental-lr", default=None, type=float,
help="LR to use for incremental task (t > 0)")
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--incremental-warmup-lr', type=float, default=None, metavar='LR',
help='warmup learning rate (default: 1e-6) for task T > 0')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
parser.set_defaults(repeated_aug=True)
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0.8,
help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
parser.add_argument('--cutmix', type=float, default=1.0,
help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem", "old"')
# Distillation parameters
parser.add_argument('--auto-kd', default=False, action='store_true',
help='Balance kd factor as WA https://arxiv.org/abs/1911.07053')
parser.add_argument('--kd', default=0., type=float)
parser.add_argument('--distillation-tau', default=1.0, type=float,
help='Temperature for the KD')
parser.add_argument('--resnet', default=False, action='store_true')
parser.add_argument('--pod', default=None, type=float)
parser.add_argument('--pod-scales', default=[1], type=int, nargs='+')
parser.add_argument('--pod-scaling', default=False, action='store_true')
# Dataset parameters
parser.add_argument('--data-path', default='', type=str,
help='dataset path')
parser.add_argument('--data-set', default='IMNET', choices=['CIFAR', 'IMNET', 'INAT', 'INAT19'],
type=str, help='Image Net dataset path')
parser.add_argument('--inat-category', default='name',
choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'],
type=str, help='semantic granularity')
parser.add_argument('--output-dir', default='',
help='Dont use that')
parser.add_argument('--output-basedir', default='./checkponts/',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# Continual Learning parameters
parser.add_argument("--initial-increment", default=50, type=int,
help="Base number of classes")
parser.add_argument("--increment", default=10, type=int,
help="Number of new classes per incremental task")
parser.add_argument('--class-order', default=None, type=int, nargs='+',
help='Class ordering, a list of class ids.')
parser.add_argument("--eval-every", default=50, type=int,
help="Eval model every X epochs, if None only eval at the task end")
parser.add_argument('--debug', default=False, action='store_true',
help='Only do one batch per epoch')
parser.add_argument('--retrain-scratch', default=False, action='store_true',
help='Retrain from scratch on all data after each step (JOINT).')
parser.add_argument('--max-task', default=None, type=int,
help='Max task id to train on')
parser.add_argument('--name', default='', help='Name to display for screen')
parser.add_argument('--options', default=[], nargs='*')
# DyTox related
parser.add_argument('--dytox', action='store_true', default=False,
help='Enable super DyTox god mode.')
parser.add_argument('--ind-clf', default='', choices=['1-1', '1-n', 'n-n', 'n-1'],
help='Independent classifier per task but predicting all seen classes')
parser.add_argument('--joint-tokens', default=False, action='store_true',
help='Forward w/ all task tokens alltogether [Faster but not working as well, not sure why')
# Diversity
parser.add_argument('--head-div', default=0., type=float,
help='Use a divergent head to predict among new classes + 1 using last token')
parser.add_argument('--head-div-mode', default=['tr', 'ft'], nargs='+', type=str,
help='Only do divergence during training (tr) and/or finetuning (ft).')
# SAM-related parameters
# SAM fails with Mixed Precision, so use --no-amp
parser.add_argument('--sam-rho', default=0., type=float,
help='Rho parameters for Sharpness-Aware Minimization. Disabled if == 0.')
parser.add_argument('--sam-adaptive', default=False, action='store_true',
help='Adaptive version of SAM (more robust to rho)')
parser.add_argument('--sam-first', default='main', choices=['main', 'memory'],
help='Apply SAM first step on main or memory loader (need --sep-memory for the latter)')
parser.add_argument('--sam-second', default='main', choices=['main', 'memory'],
help='Apply SAM second step on main or memory loader (need --sep-memory for the latter)')
parser.add_argument('--sam-skip-first', default=False, action='store_true',
help='Dont use SAM for first task')
parser.add_argument('--sam-final', default=None, type=float,
help='Final value of rho is it is changed linearly per task.')
parser.add_argument('--sam-div', default='', type=str,
choices=['old_no_upd'],
help='SAM for diversity')
parser.add_argument('--sam-mode', default=['tr', 'ft'], nargs='+', type=str,
help='Only do SAM during training (tr) and/or finetuning (ft).')
parser.add_argument('--look-sam-k', default=0, type=int,
help='Apply look sam every K updates (see under review ICLR22)')
parser.add_argument('--look-sam-alpha', default=0.7, type=float,
help='Alpha factor of look sam to weight gradient reuse, 0 < alpha <= 1')
# Rehearsal memory
parser.add_argument('--memory-size', default=2000, type=int,
help='Total memory size in number of stored (image, label).')
parser.add_argument('--distributed-memory', default=False, action='store_true',
help='Use different rehearsal memory per process.')
parser.add_argument('--global-memory', default=False, action='store_false', dest='distributed_memory',
help='Use same rehearsal memory for all process.')
parser.set_defaults(distributed_memory=True)
parser.add_argument('--oversample-memory', default=1, type=int,
help='Amount of time we repeat the same rehearsal.')
parser.add_argument('--oversample-memory-ft', default=1, type=int,
help='Amount of time we repeat the same rehearsal for finetuning, only for old classes not new classes.')
parser.add_argument('--rehearsal-test-trsf', default=False, action='store_true',
help='Extract features without data augmentation.')
parser.add_argument('--rehearsal-modes', default=1, type=int,
help='Select N on a single gpu, but with mem_size/N.')
parser.add_argument('--fixed-memory', default=False, action='store_true',
help='Dont fully use memory when no all classes are seen as in Hou et al. 2019')
parser.add_argument('--rehearsal', default="random",
choices=[
'random',
'closest_token', 'closest_all',
'icarl_token', 'icarl_all',
'furthest_token', 'furthest_all'
],
help='Method to herd sample for rehearsal.')
parser.add_argument('--sep-memory', default=False, action='store_true',
help='Dont merge memory w/ task dataset but keep it alongside')
parser.add_argument('--replay-memory', default=0, type=int,
help='Replay memory according to Guido rule [NEED DOC]')
# Finetuning
parser.add_argument('--finetuning', default='', choices=['balanced'],
help='Whether to do a finetuning after each incremental task. Backbone are frozen.')
parser.add_argument('--finetuning-epochs', default=30, type=int,
help='Number of epochs to spend in finetuning.')
parser.add_argument('--finetuning-lr', default=5e-5, type=float,
help='LR during finetuning, will be kept constant.')
parser.add_argument('--finetuning-teacher', default=False, action='store_true',
help='Use teacher/old model during finetuning for all kd related.')
parser.add_argument('--finetuning-resetclf', default=False, action='store_true',
help='Reset classifier before finetuning phase (similar to GDumb/DER).')
parser.add_argument('--only-ft', default=False, action='store_true',
help='Only train on FT data')
parser.add_argument('--ft-no-sampling', default=False, action='store_true',
help='Dont use particular sampling for the finetuning phase.')
# What to freeze
parser.add_argument('--freeze-task', default=[], nargs="*", type=str,
help='What to freeze before every incremental task (t > 0).')
parser.add_argument('--freeze-ft', default=[], nargs="*", type=str,
help='What to freeze before every finetuning (t > 0).')
parser.add_argument('--freeze-eval', default=False, action='store_true',
help='Frozen layers are put in eval. Important for stoch depth')
# Convit - CaiT
parser.add_argument('--local-up-to-layer', default=10, type=int,
help='number of GPSA layers')
parser.add_argument('--locality-strength', default=1., type=float,
help='Determines how focused each head is around its attention center')
parser.add_argument('--class-attention', default=False, action='store_true',
help='Freeeze and Process the class token as done in CaiT')
# Logs
parser.add_argument('--log-path', default="logs")
parser.add_argument('--log-category', default="misc")
# Classification
parser.add_argument('--bce-loss', default=False, action='store_true')
# distributed training parameters
parser.add_argument('--local_rank', default=None, type=int)
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
# Resuming
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start-task', default=0, type=int, help='resume from checkpoint')
parser.add_argument('--start-epoch', default=0, type=int, help='resume from checkpoint')
parser.add_argument('--save-every-epoch', default=None, type=int)
parser.add_argument('--validation', default=0.0, type=float,
help='Use % of the training set as val, replacing the test.')
return parser
def main(args):
print(args)
logger = Logger(list_subsets=['train', 'test'])
use_distillation = args.auto_kd
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
scenario_train, args.nb_classes = build_dataset(is_train=True, args=args)
scenario_val, _ = build_dataset(is_train=False, args=args)
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
model = factory.get_backbone(args)
model.head = Classifier(
model.embed_dim, args.nb_classes, args.initial_increment,
args.increment, len(scenario_train)
)
model.to(device)
# model will be on multiple GPUs, while model_without_ddp on a single GPU, but
# it's actually the same model.
model_without_ddp = model
n_parameters = sum(p.numel() for p in model_without_ddp.parameters() if p.requires_grad)
# Start the logging process on disk ----------------------------------------
if args.name:
log_path = os.path.join(args.log_dir, f"logs_{args.trial_id}.json")
long_log_path = os.path.join(args.log_dir, f"long_logs_{args.trial_id}.json")
if utils.is_main_process():
os.system("echo '\ek{}\e\\'".format(args.name))
os.makedirs(args.log_dir, exist_ok=True)
with open(os.path.join(args.log_dir, f"config_{args.trial_id}.json"), 'w+') as f:
config = vars(args)
config["nb_parameters"] = n_parameters
json.dump(config, f, indent=2)
with open(log_path, 'w+') as f:
pass # touch
with open(long_log_path, 'w+') as f:
pass # touch
log_store = {'results': {}}
args.output_dir = os.path.join(
args.output_basedir,
f"{datetime.datetime.now().strftime('%y-%m-%d')}_{args.data_set}-{args.initial_increment}-{args.increment}_{args.name}_{args.trial_id}"
)
else:
log_store = None
log_path = long_log_path = None
if args.output_dir and utils.is_main_process():
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
if args.distributed:
torch.distributed.barrier()
print('number of params:', n_parameters)
loss_scaler = scaler.ContinualScaler(args.no_amp)
criterion = LabelSmoothingCrossEntropy()
if args.mixup > 0. or args.cutmix > 0.:
criterion = SoftTargetCrossEntropy()
if args.bce_loss:
criterion = soft_bce_with_logits
elif args.bce_loss:
criterion = bce_with_logits
elif args.smoothing:
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
criterion = torch.nn.CrossEntropyLoss()
teacher_model = None
output_dir = Path(args.output_dir)
memory = None
if args.memory_size > 0:
memory = Memory(
args.memory_size, scenario_train.nb_classes, args.rehearsal, args.fixed_memory, args.rehearsal_modes
)
nb_classes = args.initial_increment
base_lr = args.lr
accuracy_list = []
start_time = time.time()
if args.debug:
args.base_epochs = 1
args.epochs = 1
args.increment_per_task = [args.initial_increment] + [args.increment for _ in range(len(scenario_train) - 1)]
# --------------------------------------------------------------------------
#
# Begin of the task loop
#
# --------------------------------------------------------------------------
dataset_true_val = None
for task_id, dataset_train in enumerate(scenario_train):
if args.max_task == task_id:
print(f"Stop training because of max task")
break
print(f"Starting task id {task_id}/{len(scenario_train) - 1}")
# ----------------------------------------------------------------------
# Data
dataset_val = scenario_val[:task_id + 1]
if args.validation > 0.: # use validation split instead of test
if task_id == 0:
dataset_train, dataset_val = split_train_val(dataset_train, args.validation)
dataset_true_val = dataset_val
else:
dataset_train, dataset_val = split_train_val(dataset_train, args.validation)
dataset_true_val.concat(dataset_val)
dataset_val = dataset_true_val
for i in range(3): # Quick check to ensure same preprocessing between train/test
assert abs(dataset_train.trsf.transforms[-1].mean[i] - dataset_val.trsf.transforms[-1].mean[i]) < 0.0001
assert abs(dataset_train.trsf.transforms[-1].std[i] - dataset_val.trsf.transforms[-1].std[i]) < 0.0001
loader_memory = None
if task_id > 0 and memory is not None:
dataset_memory = memory.get_dataset(dataset_train)
loader_memory = factory.InfiniteLoader(factory.get_train_loaders(
dataset_memory, args,
args.replay_memory if args.replay_memory > 0 else args.batch_size
))
if not args.sep_memory:
previous_size = len(dataset_train)
for _ in range(args.oversample_memory):
dataset_train.add_samples(*memory.get())
print(f"{len(dataset_train) - previous_size} samples added from memory.")
if args.only_ft:
dataset_train = get_finetuning_dataset(dataset_train, memory, 'balanced')
# ----------------------------------------------------------------------
# ----------------------------------------------------------------------
# Initializing teacher model from previous task
if use_distillation and task_id > 0:
teacher_model = copy.deepcopy(model_without_ddp)
teacher_model.freeze(['all'])
teacher_model.eval()
# ----------------------------------------------------------------------
# ----------------------------------------------------------------------
# Ensembling
if args.dytox:
model_without_ddp = factory.update_dytox(model_without_ddp, task_id, args)
# ----------------------------------------------------------------------
# ----------------------------------------------------------------------
# Adding new parameters to handle the new classes
print("Adding new parameters")
if task_id > 0 and not args.dytox:
model_without_ddp.head.add_classes()
if task_id > 0:
model_without_ddp.freeze(args.freeze_task)
# ----------------------------------------------------------------------
# ----------------------------------------------------------------------
# Debug: Joint training from scratch on all previous data
if args.retrain_scratch:
model_without_ddp.init_params()
dataset_train = scenario_train[:task_id+1]
# ----------------------------------------------------------------------
# ----------------------------------------------------------------------
# Data
loader_train, loader_val = factory.get_loaders(dataset_train, dataset_val, args)
# ----------------------------------------------------------------------
# ----------------------------------------------------------------------
# Learning rate and optimizer
if task_id > 0 and args.incremental_batch_size:
args.batch_size = args.incremental_batch_size
if args.incremental_lr is not None and task_id > 0:
linear_scaled_lr = args.incremental_lr * args.batch_size * utils.get_world_size() / 512.0
else:
linear_scaled_lr = base_lr * args.batch_size * utils.get_world_size() / 512.0
args.lr = linear_scaled_lr
optimizer = create_optimizer(args, model_without_ddp)
lr_scheduler, _ = create_scheduler(args, optimizer)
# ----------------------------------------------------------------------
if mixup_active:
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing,
num_classes=nb_classes,
loader_memory=loader_memory
)
skipped_task = False
initial_epoch = epoch = 0
if args.resume and args.start_task > task_id:
utils.load_first_task_model(model_without_ddp, loss_scaler, task_id, args)
print("Skipping first task")
epochs = 0
train_stats = {"task_skipped": str(task_id)}
skipped_task = True
elif args.base_epochs is not None and task_id == 0:
epochs = args.base_epochs
else:
epochs = args.epochs
if args.distributed:
del model
model = torch.nn.parallel.DistributedDataParallel(
model_without_ddp, device_ids=[args.gpu], find_unused_parameters=True)
torch.distributed.barrier()
else:
model = model_without_ddp
model_without_ddp.nb_epochs = epochs
model_without_ddp.nb_batch_per_epoch = len(loader_train)
# Init SAM, for DyTox++ (see appendix) ---------------------------------
sam = None
if args.sam_rho > 0. and 'tr' in args.sam_mode and ((task_id > 0 and args.sam_skip_first) or not args.sam_skip_first):
if args.sam_final is not None:
sam_step = (args.sam_final - args.sam_rho) / scenario_train.nb_tasks
sam_rho = args.sam_rho + task_id * sam_step
else:
sam_rho = args.sam_rho
print(f'Initialize SAM with rho={sam_rho}')
sam = SAM(
optimizer, model_without_ddp,
rho=sam_rho, adaptive=args.sam_adaptive,
div=args.sam_div,
use_look_sam=args.look_sam_k > 0, look_sam_alpha=args.look_sam_alpha
)
# ----------------------------------------------------------------------
print(f"Start training for {epochs-initial_epoch} epochs")
max_accuracy = 0.0
for epoch in range(initial_epoch, epochs):
if args.distributed:
loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, loader_train,
optimizer, device, epoch, task_id, loss_scaler,
args.clip_grad, mixup_fn,
debug=args.debug,
args=args,
teacher_model=teacher_model,
model_without_ddp=model_without_ddp,
sam=sam,
loader_memory=loader_memory,
pod=args.pod if task_id > 0 else None, pod_scales=args.pod_scales
)
lr_scheduler.step(epoch)
if args.save_every_epoch is not None and epoch % args.save_every_epoch == 0:
if os.path.isdir(args.resume):
with open(os.path.join(args.resume, 'save_log.txt'), 'w+') as f:
f.write(f'task={task_id}, epoch={epoch}\n')
checkpoint_paths = [os.path.join(args.resume, f'checkpoint_{task_id}.pth')]
for checkpoint_path in checkpoint_paths:
if (task_id < args.start_task and args.start_task > 0) and os.path.isdir(args.resume) and os.path.exists(checkpoint_path):
continue
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'task_id': task_id,
'scaler': loss_scaler.state_dict(),
'args': args,
}, checkpoint_path)
if args.eval_every and (epoch % args.eval_every == 0 or (args.finetuning and epoch == epochs - 1)):
eval_and_log(
args, output_dir, model, model_without_ddp, optimizer, lr_scheduler,
epoch, task_id, loss_scaler, max_accuracy,
[], n_parameters, device, loader_val, train_stats, None, long_log_path,
logger, model_without_ddp.epoch_log()
)
logger.end_epoch()
if memory is not None and args.distributed_memory:
task_memory_path = os.path.join(args.resume, f'dist_memory_{task_id}-{utils.get_rank()}.npz')
if os.path.isdir(args.resume) and os.path.exists(task_memory_path):
# Resuming this task step, thus reloading saved memory samples
# without needing to re-compute them
memory.load(task_memory_path)
else:
task_set_to_rehearse = scenario_train[task_id]
if args.rehearsal_test_trsf:
task_set_to_rehearse.trsf = scenario_val[task_id].trsf
memory.add(task_set_to_rehearse, model, args.initial_increment if task_id == 0 else args.increment)
#memory.add(scenario_train[task_id], model, args.initial_increment if task_id == 0 else args.increment)
if args.resume != '':
memory.save(task_memory_path)
else:
memory.save(os.path.join(args.output_dir, f'dist_memory_{task_id}-{utils.get_rank()}.npz'))
if memory is not None and not args.distributed_memory:
task_memory_path = os.path.join(args.resume, f'memory_{task_id}.npz')
if utils.is_main_process():
if os.path.isdir(args.resume) and os.path.exists(task_memory_path):
# Resuming this task step, thus reloading saved memory samples
# without needing to re-compute them
memory.load(task_memory_path)
else:
task_set_to_rehearse = scenario_train[task_id]
if args.rehearsal_test_trsf:
task_set_to_rehearse.trsf = scenario_val[task_id].trsf
memory.add(task_set_to_rehearse, model, args.initial_increment if task_id == 0 else args.increment)
if args.resume != '':
memory.save(task_memory_path)
else:
memory.save(os.path.join(args.output_dir, f'memory_{task_id}-{utils.get_rank()}.npz'))
assert len(memory) <= args.memory_size, (len(memory), args.memory_size)
torch.distributed.barrier()
if not utils.is_main_process():
if args.resume != '':
memory.load(task_memory_path)
else:
memory.load(os.path.join(args.output_dir, f'memory_{task_id}-0.npz'))
memory.save(os.path.join(args.output_dir, f'memory_{task_id}-{utils.get_rank()}.npz'))
torch.distributed.barrier()
# ----------------------------------------------------------------------
# FINETUNING
# ----------------------------------------------------------------------
# Init SAM, for DyTox++ (see appendix) ---------------------------------
sam = None
if args.sam_rho > 0. and 'ft' in args.sam_mode and ((task_id > 0 and args.sam_skip_first) or not args.sam_skip_first):
if args.sam_final is not None:
sam_step = (args.sam_final - args.sam_rho) / scenario_train.nb_tasks
sam_rho = args.sam_rho + task_id * sam_step
else:
sam_rho = args.sam_rho
print(f'Initialize SAM with rho={sam_rho}')
sam = SAM(
optimizer, model_without_ddp,
rho=sam_rho, adaptive=args.sam_adaptive,
div=args.sam_div,
use_look_sam=args.look_sam_k > 0, look_sam_alpha=args.look_sam_alpha
)
# ----------------------------------------------------------------------
if args.finetuning and memory and (task_id > 0 or scenario_train.nb_classes == args.initial_increment) and not skipped_task:
dataset_finetune = get_finetuning_dataset(dataset_train, memory, args.finetuning, args.oversample_memory_ft, task_id)
print(f'Finetuning phase of type {args.finetuning} with {len(dataset_finetune)} samples.')
loader_finetune, loader_val = factory.get_loaders(dataset_finetune, dataset_val, args, finetuning=True)
print(f'Train-ft and val loaders of lengths: {len(loader_finetune)} and {len(loader_val)}.')
if args.finetuning_resetclf:
model_without_ddp.reset_classifier()
model_without_ddp.freeze(args.freeze_ft)
if args.distributed:
del model
model = torch.nn.parallel.DistributedDataParallel(model_without_ddp, device_ids=[args.gpu], find_unused_parameters=True)
torch.distributed.barrier()
else:
model = model_without_ddp
model_without_ddp.begin_finetuning()
args.lr = args.finetuning_lr * args.batch_size * utils.get_world_size() / 512.0
optimizer = create_optimizer(args, model_without_ddp)
for epoch in range(args.finetuning_epochs):
if args.distributed and hasattr(loader_finetune.sampler, 'set_epoch'):
loader_finetune.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, loader_finetune,
optimizer, device, epoch, task_id, loss_scaler,
args.clip_grad, mixup_fn,
debug=args.debug,
args=args,
teacher_model=teacher_model if args.finetuning_teacher else None,
model_without_ddp=model_without_ddp,
pod=args.pod if task_id > 0 else None, pod_scales=args.pod_scales
)
if epoch % 10 == 0 or epoch == args.finetuning_epochs - 1:
eval_and_log(
args, output_dir, model, model_without_ddp, optimizer, lr_scheduler,
epoch, task_id, loss_scaler, max_accuracy,
[], n_parameters, device, loader_val, train_stats, None, long_log_path,
logger, model_without_ddp.epoch_log()
)
logger.end_epoch()
model_without_ddp.end_finetuning()
eval_and_log(
args, output_dir, model, model_without_ddp, optimizer, lr_scheduler,
epoch, task_id, loss_scaler, max_accuracy,
accuracy_list, n_parameters, device, loader_val, train_stats, log_store, log_path,
logger, model_without_ddp.epoch_log(), skipped_task
)
logger.end_task()
nb_classes += args.increment
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
print(f'Setting {args.data_set} with {args.initial_increment}-{args.increment}')
print(f"All accuracies: {accuracy_list}")
print(f"Average Incremental Accuracy: {statistics.mean(accuracy_list)}")
if args.name:
print(f"Experiment name: {args.name}")
log_store['summary'] = {"avg": statistics.mean(accuracy_list)}
if log_path is not None and utils.is_main_process():
with open(log_path, 'a+') as f:
f.write(json.dumps(log_store['summary']) + '\n')
def load_options(args, options):
varargs = vars(args)
name = []
for o in options:
with open(o) as f:
new_opts = yaml.safe_load(f)
for k, v in new_opts.items():
if k not in varargs:
raise ValueError(f'Option {k}={v} doesnt exist!')
varargs.update(new_opts)
name.append(o.split("/")[-1].replace('.yaml', ''))
return '_'.join(name)
if __name__ == '__main__':
parser = argparse.ArgumentParser('DyTox training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
utils.init_distributed_mode(args)
if args.options:
name = load_options(args, args.options)
if not args.name:
args.name = name
args.log_dir = os.path.join(
args.log_path, args.data_set.lower(), args.log_category,
datetime.datetime.now().strftime('%y-%m'),
f"week-{int(datetime.datetime.now().strftime('%d')) // 7 + 1}",
f"{int(datetime.datetime.now().strftime('%d'))}_{args.name}"
)
if isinstance(args.class_order, list) and isinstance(args.class_order[0], list):
print(f'Running {len(args.class_order)} different class orders.')
class_orders = copy.deepcopy(args.class_order)
for i, order in enumerate(class_orders, start=1):
print(f'Running class ordering {i}/{len(class_orders)}.')
args.trial_id = i
args.class_order = order
main(args)
else:
args.trial_id = 1
main(args)