diff --git a/.ipynb_checkpoints/google_CSV_example-checkpoint.ipynb b/.ipynb_checkpoints/google_CSV_example-checkpoint.ipynb deleted file mode 100644 index 57bb2276..00000000 --- a/.ipynb_checkpoints/google_CSV_example-checkpoint.ipynb +++ /dev/null @@ -1,316 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import csv\n", - "import pandas as pd\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "from pandas import read_csv\n", - "from matplotlib import pyplot" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "bashCommand = \"wget https://docs.google.com/spreadsheets/d/1nH8J5PViu8yRVMAY5q3ydS6Onqv5ZOh3tdeM5MP9YQo/export?format=csv -O ages.csv\"\n", - "os.system(bashCommand)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "path = 'ages.csv'\n", - "headers = ['Room','Variable 1','Variable 2']\n", - "df = pd.read_csv(path)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "df = df.set_index('Room')" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
room1room2room3room4room5room6room7room8room9room10
Room
Subject A56204816.032.064.0128.0256.0512.0
Subject B2-625012562.031.015.07.03.01.0
Subject C31671256.023.023.023.01.010.0
Subject D41451144.011.067.011.021.011.0
Subject E51267255.044.033.026.033.056.0
\n", - "
" - ], - "text/plain": [ - " room1 room2 room3 room4 room5 room6 room7 room8 room9 \\\n", - "Room \n", - "Subject A 56 20 4 8 16.0 32.0 64.0 128.0 256.0 \n", - "Subject B 2 -6 250 125 62.0 31.0 15.0 7.0 3.0 \n", - "Subject C 3 16 7 12 56.0 23.0 23.0 23.0 1.0 \n", - "Subject D 4 14 5 11 44.0 11.0 67.0 11.0 21.0 \n", - "Subject E 5 12 67 2 55.0 44.0 33.0 26.0 33.0 \n", - "\n", - " room10 \n", - "Room \n", - "Subject A 512.0 \n", - "Subject B 1.0 \n", - "Subject C 10.0 \n", - "Subject D 11.0 \n", - "Subject E 56.0 " - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "df.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "ages = df.columns[0:10]" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[]" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAD8CAYAAABgmUMCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl4lOW5x/HvzQ5h32QNAdk3FQK4YqXFDQWUelpq0eppaXu6t0cBlxYVq7GeqrXFFttaPdKVsKkIlgrUqqAJSiYQ1rDKFvYQyDr3+WOmB0SCCZnkTSa/z3VxBR7fvO89I5kfzzPv3I+5OyIiImVVJ+gCRESkZlFwiIhIuSg4RESkXBQcIiJSLgoOEREpFwWHiIiUi4JDRETKRcEhIiLlouAQEZFyqRd0AZWhbdu2npSUFHQZIiI1Rnp6+gF3b1eWY+MyOJKSkkhLSwu6DBGRGsPMtpf1WC1ViYhIuSg4RESkXBQcIiJSLgoOEREpFwWHiIiUS7UIDjNrY2bLzOy4mf3yjP821MxCZrbZzH5hZhZUnSIiUs7gsIjKCJt84EHgv8/y354DJgO9or+ur4Tri4hIGX1qCJhZkpllmdlMYDUwKToDyDSzlNOOm1jK+HEzSzGzdDNbambDzWy5mWWb2VgAd89z938RCZDTr90RaO7u73pkj9uXgPGxeegiIvHj/W2H+PWKLVVyrbLOHvoQedEeAzwCjAIuBoaZ2Xgz6wSknDke/d4EYLm7DwVygRnAaOAW4OFPuW5nYNdpf94VHfsEM5tsZmlmlpaTk1PGhyUiUrMdLyjmxwsyue3X7/LHVTs4UVhc6dcs6yfHt7v7SjMbRyQEcgDMbDYwEvBSxucDhcDi6HlCQIG7F5lZCEj6lOue7f0MP9uB7j4LmAWQnJx81mNEROLJ8g37uX9eJruPnuSuK5L472v70KRB5TcEKesV8qJfS3tj+lxvWBdFl5kAwkABgLuHzezTrr8L6HLan7sAuz/le0RE4trhvEIeeW0dc1d/RM/2TZnzjcsZ2q1VlV2/vG90rwKuNrO2ZlYXmAisOMd4hbj7HiDXzC6N3k11B7CgoucVEamJ3J1FoT2MfmoFCz/czXdG9eS1715ZpaEB5Wxy6O57zGwasIzILGORuy8AKG28rMxsG9AcaBB9f+Rad18HfBP4A9AYeD36S0SkVtl/LJ8HF2SyZO0+BnVuwUt3j6B/p+aB1GKnVpHiR3Jysqs7rojEA3fnb+m7mPHqOgqKw/xwdG/+88ru1Ksb209GmFm6uyeX5di4bKsuIhIPdh46wbS5If61+QDDu7fm8VsH0aNd06DLUnCIiFQ3JWHnxXe28bMlG6hbx5gxfiBfGp5InTrVo3GGgkNEpBrZtC+XKakZrN5xhM/0acdPbxlEp5aNgy7rYxQcIiLVQFFJmF8v38Kzb24moWFdnv7CxYy7uBPVsT2fgkNEJGChXUe5Z84a1u/N5eaLOvGTm/vTtmnDoMsqlYJDRCQg+UUlPLV0I8//M5t2zRry/B3JjO5/QdBlfSoFh4hIAFZmH2RqagbbDp5g4vCuTL2hHy0a1w+6rDJRcIiIVKHc/CIef309s1ftILF1E/741RFc3rNt0GWVi4JDRKSKLFu/n/vmhdh3LJ+vXtmdH17bu0qaEsZazatYRKSGOZRXyMOvrGX+h7vpfUFTZt5+OZckVm1/qVhScIiIVBJ355WMPUxfuJbc/CK+99lefOuanjSoVy127T5vCg4RkUqw92g+D8zPZGnWPi7q0oKUz4+gb4dgmhLGmoJDRCSG3J0/v7+Tn76WRVE4zP039uPuK7tTt5q0C4mFah0cZtYA+A2QTGQTqO+5+/JAixIRKcX2g3lMTQ3xbvZBLu3RmsdvHUxS24Sgy4q5mARHdJMlc/dwLM53mq8BuPsgM2sPvG5mwyrhOiIi560k7Lzw9laefGMD9evU4bFbB/HFYV2rZbuQWDjvd2jMLMnMssxsJrAamGRmITPLNLOU046bWMr4cTNLMbN0M1tqZsPNbLmZZZvZ2Ohh/YF/ALj7fuAIkdmHiEi1sGFvLrc+9w4zXsviyp5t+fsPr2bi8MS4DQ2oQHBE9QFeAsYAjwCjgIuBYWY23sw6ASlnjke/NwFY7u5DgVxgBjAauAV4OHrMGmCcmdUzs+7AUKDr2Qoxs8lmlmZmaTk5ORV8WCIi51ZYHObppRu56dm32HnoBL+YeAnP35FMhxaNgi6t0lV0qWq7u680s3FEQiAHwMxmAyMBL2V8PlAILI6eJwQUuHuRmYWApOj474F+QBqwHXgHKD5bIe4+C5gFkR0AK/i4RERK9eHOI0yZk8GGfbmMu7gTP7l5AK0TGgRdVpWpaHDkRb+WNic711ytyE/tWxsGCgDcPWxm9aK/LwZ+8P8nM3sH2FShikVEztPJwhJ+/vcN/O5fW2nfrBG/uzOZz/ar/k0JYy1Wd1WtAp4xs7bAYWAi8CzwXinjZWJmTYi86Z5nZqOBYndfF6OaRUTK7J0tB5iaGmLHoRPcPiKRKTf0pXmjmtGUMNZiEhzuvsfMpgHLiMwyFrn7AoDSxsuoPbDEzMLAR8CkWNQrIlJWx/KLeGzRev703g6S2jThz5Mv5dIebYIuK1B2arUofiQnJ3taWlrQZYhIDbd03T7unx8iJ7eAr13Vg+9/rjeNG9QNuqxKYWbp7l6mu1ar9QcARUSCcPB4AdNfWccra3bTt0Mznr8jmcFdWgZdVrWh4BARiXJ3Fq7ZzfSFazleUMwPR/fmG1dfWOObEsaagkNEBNh95CQPzM/kzfX7ubhrS574/GB6X9As6LKqJQWHiNRq4bDzp/d38Nii9ZSEnQdv6s9XLk+Kq6aEsabgEJFaa+uBPKamZrBq6yGu6NmGx24ZTGKbJkGXVe0pOESk1ikuCfP7t7fyP29spEG9OqRMGMR/JMdvU8JYU3CISK2StecYU1IzyNh1lNH9L2DG+IFc0Dz++0vFkoJDRGqFguISfvXmZmYu30LLJvX51ZeGcOOgDpplnAcFh4jEvdU7DjNlTgab9h/n1ks68+BN/WlVi5oSxpqCQ0Ti1onCYp5cspEX3tlKx+aNeOGuYVzTp33QZdV4Cg4RiUtvbz7A1LkZ7Dx0kkmXduPe6/vQrJY2JYw1BYeIxJWjJ4v46WtZ/CVtJ93bJvCXyZcyopY3JYw1BYeIxI031u7lgfmZHMwr5BtXX8j3P9eLRvXjsylhkKp1cJhZfeC3wBAitb7k7o8FW5WIVDc5uQVMf2Utr2XsoV/H5vzuzmEM6tIi6LLiVkyCwyL3s5m7h2NxvtPcBjR090HRTZ3Wmdmf3H1bjK8jIjWQuzP/w4946JV1nCgo4Z7r+jB5ZA/q11VTwsp03s+umSWZWZaZzQRWA5PMLGRmmWaWctpxE0sZP25mKWaWbmZLzWy4mS03s2wzGxs9zIGE6FayjYnsU37sfGsWkfjx0ZGT3PWH9/nBX9bQo20Ci753Jd+6pqdCowpUdMbRB7gLmAGsBIYS2SL2DTMbT2Tr2JQzx919PpAALHf3KWY2L3qO0UB/4EVgITAHGAfsAZoAP3D3Q2crxMwmA5MBEhMTK/iwRKS6Coed2au28/jr6wk7/OTm/txxmZoSVqWKBsd2d19pZuOIhEAOgJnNBkYSmTGcbXw+kdnD4uh5QkCBuxeZWQhIio4PB0qATkAr4C0zW+ru2WcW4u6zgFkQ2QGwgo9LRKqh7JzjTE0N8d62Q1zVqy0/vWUQXVurKWFVq2hw5EW/lhb15/onQJGf2rc2DBQAuHs4ujQF8CVgsbsXAfvN7G0gGfhEcIhI/CouCfP8W1t5aulGGtWrw88+P5jPD+2idiEBidVi4CrgajNra2Z1gYnAinOMl9UOYJRFJACXAutjVLOI1ABrdx9l/My3SVm8nlF92rP0R1dzmzrZBiomd1W5+x4zmwYsIzLLWOTuCwBKGy+jXwEvAJnR73/B3TNiUbOIVG/5RSU8++Ymfr0im1ZNGvDc7UO4YVDHoMsSIrfQBl1DzCUnJ3taWlrQZYjIeUrffoh752SwJSePCUO68OBN/WjZRE0JK5OZpbt7clmOrdYfABSR2iWvoJifLdnAi+9uo1OLxrx493Cu7t0u6LLkDAoOEakW/rkxh2lzQ+w+epI7L0vinuv6kNBQL1HVkf6viEigjpwoZMZrWcxJ30WPdgn87euXkZzUOuiy5BwUHCISmNdDe3hwwVoOnyjkW9dcyHdGqSlhTaDgEJEqtz83n58sWMvrmXsZ0Kk5L949jAGd1JSwplBwiEiVcXfmpO9ixmtZnCwqYcr1ffnqVd3VX6qGUXCISJXYeegE980L8damAwxLasXjEwZzYbumQZcl50HBISKVKhx2Xnp3G08s2YABj4wbwO0julFHTQlrLAWHiFSazftzmZIaIn37Ya7u3Y5HbxlIl1ZqSljTKThEJOaKSsLM+mc2zyzdRJOGdfn5f1zELZd0Vn+pOKHgEJGYyvzoKPfMySBrzzHGDO7I9JsH0K5Zw6DLkhhScIhITOQXlfD00k08/1Y2rRMa8JtJQ7luQIegy5JKUK2Dw8xuB+45bWgwMMTdPwyoJBE5i/e2HmJqagbZB/L4QnJX7ruxHy2a1A+6LKkkMQkOiyxcmruHY3G+f3P32cDs6DUGAQsUGiLVR25+EU8s3sD/rtxO19aNefk/R3Blr7ZBlyWV7Lw/dWNmSWaWZWYzgdXAJDMLmVmmmaWcdtzEUsaPm1mKmaWb2VIzG25my80s28zGnuWSE4E/nW+9IhJbyzbs57qn/snLq7Zz9xXdWfL9kQqNWqKiM44+wF3ADGAlMBQ4DLxhZuOB94CUM8fdfT6QQGQ/8ilmNi96jtFAf+BFYOEZ1/oCMK6C9YpIBR3OK+SRV9cx94OP6NW+KanfvJwhia2CLkuqUEWDY7u7rzSzcURCIAfAzGYDIwEvZXw+UAgsjp4nBBS4e5GZhYCk0y9iZiOAE+6eWVohZjYZmAyQmJhYwYclImdyd14L7eEnC9Zy9GQR3x3Vk2+N6knDempKWNtUNDjyol9Luzn7XDdtF/mp7QfDQAGAu4fN7My6vsinLFO5+yxgFkR2ADzXsSJSPvuO5fPg/EzeWLePwV1a8PJXR9CvY/Ogy5KAxOquqlXAM2bWlsiS1ETgWSJLVWcbLzMzqwPcRmSmIiJVyN35a9pOZryWRWFxmPtu7MvdV3SnnpoS1moxCQ5332Nm04BlRGYZi9x9AUBp4+UwEtjl7tmxqFVEymbHwRNMm5fB25sPMqJ7a1ImDCapbULQZUk1YKdWi+JHcnKyp6WlBV2GSI1UEnb+8M42nlyygbp1jGk39mXisEQ1JYxzZpbu7sllObZafwBQRKrWxn253Dsngw93HmFU3/Y8estAOrZoHHRZUs0oOESEwuIwv16xhWff3ETThvV45osXM/aiTmpKKGel4BCp5dbsPMKU1AzW783l5os6Mf3m/rRpqqaEUjoFh0gtdbKwhKeXbuT5t7Jp16whz9+RzOj+FwRdltQACg6RWmhl9kGmpmaw7eAJJg5PZNqNfWneSE0JpWwUHCK1SG5+EY+/vp7Zq3bQrU0T/vi1EVx+ofpLSfkoOERqiTfX7+P+eZnsO5bP167qzg9H96FxA7ULkfJTcIjEuYPHC3j41XUs+HA3fS5oxnNfHsrFXVsGXZbUYAoOkTjl7rySsYfpC9eSm1/E9z/Xi//6TE8a1FO7EKkYBYdIHNp7NJ8H5odYmrWfi7q25IkJg+nToVnQZUmcUHCIxBF358/v7+Snr2VRFA7zwJh+3HVFd+qqXYjEkIJDJE5sP5jH1NQQ72Yf5LIebXh8wiC6tVFTQok9BYdIDVcSdl54eytPvrGB+nXq8Nitg/jisK5qFyKVptoHh5kNBn4DNCey4dMwd88PtiqR6mHD3lzuTc1gzc4jfK5fe2aMH0SHFo2CLkviXEyCwyL/tDF3D8fifKedtx7wMjDJ3deYWRugKJbXEKmJCovD/GrZZmYu30zzRvV5duIl3DS4o2YZUiXO+748M0sysywzmwmsBiaZWcjMMs0s5bTjJpYyftzMUsws3cyWmtlwM1tuZtlmNjZ62LVAhruvAXD3g+5ecr41i8SDD3ce4aZn3+KZf2xizKCO/P2HV3OzOtlKFaroDd19gJeAMcAjwCjgYmCYmY03s05Aypnj0e9NAJa7+1AgF5gBjAZuAR6OHtMbcDNbYmarzezeCtYrUmOdLCxhxqvruHXm2+TmF/P7ryTz9BcvoXVCg6BLk1qmoktV2919pZmNIxICOQBmNpvIlq9eyvh8oBBYHD1PCChw9yIzCwFJp9V3JTAMOAH8I7pL1T/OLMTMJgOTARITEyv4sESql3e2HGBqaogdh07wpRGJTLuhL83UlFACUtHgyIt+LW2OfK65c5Gf2rc2DBQAuHs4+t4GwC5ghbsfADCzRcAQ4BPB4e6zgFkQ2Tq2PA9CpLo6ll/EY4uy+NN7O0lq04Q/T76US3u0CbosqeVi1XtgFXC1mbU1s7rARGDFOcbLagkw2MyaRMPkamBdjGoWqdaWrtvH6J+v4C/v7+TrI3vw+vdGKjSkWojJXVXuvsfMpgHLiMwyFrn7AoDSxst43sNm9nPgfSLLXovc/bVY1CxSXR04XsBDr6zjlTW76duhGc/fkczgLmpKKNWHnVotih/JycmelpYWdBki5eLuLPhwNw+9spa8ghK+M6onX7/6QjUllCoRff84uSzHVvsPAIrUBruPnOSB+Zm8uX4/lyRGmhL2ukBNCaV6UnCIBCgcdv743g4ef309JWHnxzf1587Lk9SUUKo1BYdIQLYeyGNqagarth7iyp5teezWQXRt3SToskQ+lYJDpIoVl4T53b+28vO/b6RBvTo8MWEwtyV30Se/pcZQcIhUoaw9x5iSmkHGrqNc2/8CHhk/kAuaqymh1CwKDpEqUFBcwi/f3Mxzy7fQskl9fvWlIdw4qINmGVIjKThEKln69sNMSc1g8/7j3DqkMw+O6U8r9ZeSGkzBIVJJThQW87MlG/jDO9vo2LwRL9w1jGv6tA+6LJEKU3CIVIJ/bTrA1LkZ7Dp8kjsu68a91/elaUP9uEl80N9kkRg6eqKIRxet469pu+jRNoG/fv0yhndvHXRZIjGl4BCJkcWZe3lwQSaH8gr55mcu5Huf7UWj+nWDLksk5hQcIhWUk1vA9IVreS20h/4dm/PCV4YxsHOLoMsSqTQKDpHz5O7MXf0RD7+6jpOFJdxzXR8mj+xB/bpqSijxrVoHh5klAVnAhujQSnf/RmAFiUR9dOQk980NsWJjDkO7tSJlwmB6tm8adFkiVSImwWGRTzGZu4djcb4zbHH3iyvhvCLlFg47L6/aTsrr63HgobEDmHRpN+qoKaHUIuc9pzazJDPLMrOZwGpgkpmFzCzTzFJOO25iKePHzSzFzNLNbKmZDTez5WaWbWZjK/awRGJvS85xvjDrXX68YC1DurViyfdHcuflSQoNqXUquhjbB3gJGAM8AowCLgaGmdl4M+sEpJw5Hv3eBGC5uw8FcoEZwGjgFuDh067R3cw+MLMVZnZVBesVKbeikjAzl2/mhmfeYuO+4zx520W8dPdwdbKVWquiS1Xb3X2lmY0jEgI5AGY2GxhJZLvXs43PBwqBxdHzhIACdy8ysxCQFB3fAyS6+0EzGwrMN7MB7n7szELMbDIwGSAxMbGCD0skIvOjo0xJzWDt7mPcMLADD40bQPtmakootVtFgyMv+rW0ufq55vBFfmrf2jBQAODuYTOrF/19wWnj6Wa2BegNfGJfWHefBcyCyNax5XwcIh+TX1TCs29u4tcrsmnVpAHP3T6EGwZ1DLoskWohVndVrQKeMbO2wGFgIvAs8F4p42ViZu2AQ+5eYmY9gF5AdoxqFjmrtG2HuDc1g+ycPG4b2oX7x/SjZRM1JRT5t5gEh7vvMbNpwDIis4xF7r4AoLTxMhoJPGxmxUAJ8A13PxSLmkXOdLygmJ8tXs9LK7fTqUVjXrp7OCN7twu6LJFqx06tFsWP5ORkT0v7xGqWSKlWbMzhvrkhdh89yZ2XJXHPdX1IUFNCqUXMLN3dk8tyrH4ypFY7cqKQR17NInX1Li5sl8Dfvn4ZyUlqSihyLgoOqbVeD+3hwQVrOXyikG9f05Nvj+qppoQiZaDgkFpn/7F8frxgLYvX7mVAp+a8ePcwBnRSU0KRslJwSK3h7vwtfRczXl1HfnGYKdf35WtXdaeemhKKlIuCQ2qFnYdOcN+8EG9tOsDwpNY8PmEQPdqpKaHI+VBwSFwrCTsvvbuNny3ZgAGPjBvA7SPUlFCkIhQcErc2789lSmqI9O2Hubp3O3566yA6t2wcdFkiNZ6CQ+JOUUmY36zYwi/+sZkmDevy8/+4iFsu6Uyk+7+IVJSCQ+JKaNdR7pmzhvV7cxkzuCPTbx5Au2YNgy5LJK4oOCQu5BeV8PTSTTz/VjZtEhrwm0lDuW5Ah6DLEolLCg6p8VZlH2Tq3BBbD+TxheSu3DemHy0a1w+6LJG4peCQGis3v4gnFm/gf1dup2vrxsz+6giu6Nk26LJE4p6CQ2qkZRv2c//cEHuO5XP3Fd357+t606SB/jqLVIUa8ZNmZonAOmC6uz8ZdD0SnEN5hTzy6jrmffARvdo3JfWblzMksVXQZYnUKjEJDovc52juHo7F+c7iKeD1Sjq31ADuzmuhPfxkwVqOniziu5/txbeuuZCG9dSUUKSqnXeTHjNLMrMsM5sJrAYmmVnIzDLNLOW04yaWMn7czFLMLN3MlprZcDNbbmbZZjb2tOPGE9n1b+351io1275j+Uz+33S+/ccP6NyqMa9850p+OLq3QkMkIBWdcfQB7gJmACuBoUS2iH0j+oL/HpBy5ri7zwcSgOXuPsXM5kXPMRroD7wILDSzBGBKdPy/K1ir1DDuzl/TdjLjtSwKi8Pcd2Nf7r5CTQlFglbR4Nju7ivNbByREMgBMLPZRLZ99VLG5wOFwOLoeUJAgbsXmVkISIqOPwQ85e7HP+1Tv2Y2GZgMkJiYWMGHJUHbcfAEU+dm8M6Wg4zo3pqUCYNJapsQdFkiQsWDIy/6tbRX9XO92hf5qX1rw0ABgLuHzezfdY0APm9mTwAtgbCZ5bv7L888mbvPAmZBZOvY8j0MqS5Kws4f3tnGk0s2ULeOMWP8QL40PFFNCUWqkVjdVbUKeMbM2hJZkpoIPEtkqeps42Xi7lf9+/dmNh04frbQkPiwcV8u987J4MOdR7imTzsevWUQndSUUKTaiUlwuPseM5sGLCMyy1jk7gsAShsX+bfC4jDPLd/CL5dtomnDejzzxYsZe1EnNSUUqabs1GpR/EhOTva0tLSgy5AyWLPzCFNSM1i/N5ebL+rE9Jv706apmhKKVDUzS3f35LIcWyM+ACjx52RhCU8t3chv38qmXbOGPH9HMqP7XxB0WSJSBgoOqXLvbjnItLkZbDt4gonDuzLtxn40b6SmhCI1hYJDqsyx/CIef309f1y1g8TWTfjjV0dwuZoSitQ4Cg6pEv/I2sf98zLZn5vP167qzg9H96FxA33yW6QmUnBIpTp4vICHXlnHwjW76XNBM349aSgXd20ZdFkiUgEKDqkU7s7CNbt56JV15OYX8f3P9eK/PtOTBvXULkSkplNwSMztOXqSB+Zl8o/1+7moa0uemDCYPh2aBV2WiMSIgkNiJhx2/vz+Th5blEVROMwDY/px1xXdqat2ISJxRcEhMbHtQB5T52awMvsQl/Vow+MTBtGtjZoSisQjBYdUSHFJmN+/vZX/eWMjDerW4fFbB/GFYV3VLkQkjik45Lyt33uMKXMyWLPrKJ/r154Z4wfRoUWjoMsSkUqm4JByKygu4VfLtjBz2WZaNK7PsxMv4abBHTXLEKklFBxSLh/sOMyU1Aw27jvO+Is78eObB9A6oUHQZYlIFarWwWFmw4luzkSkLft0d58XYEm11onCYv7njY38/u2tdGjeiN9/JZlRfdWUUKQ2iklwWGSNwtw9HIvznSYTSHb3YjPrCKwxs1fcvTjG15FzeGfzAabODbHj0Am+fGkiU67vSzM1JRSptc77Y7xmlmRmWWY2E1gNTDKzkJllmlnKacdNLGX8uJmlmFm6mS01s+FmttzMss1sLIC7nzgtJBoR2cNcqsjRk0VMTc3gS79dRR2DP0++lBnjByk0RGq5is44+gB3ATOAlcBQIlvEvmFm44lsHZty5ri7zwcSgOXuPsXM5kXPMRroD7wILAQwsxHA74FuwCTNNqrG39ft44H5IXJyC/j61T34wed606i+mhKKSMWDY7u7rzSzcURCIAfAzGYDI4nMEM42Ph8oBBZHzxMCCty9yMxCQNK/L+Duq4ABZtYPeNHMXnf3/DMLMbPJwGSAxMTECj6s2uvA8QKmL1zLqxl76NuhGc/fkczgLmpKKCKnVDQ48qJfS7sP81z3Zxb5qX1rw0ABgLuHzewTdbl7lpnlAQOBT+wL6+6ziL6RnpycrCWtcnJ35n/4EQ+9so4TBSX8aHRvvn71hWpKKCKfEKu7qlYBz5hZWyJLUhOBZ4ksVZ1tvEzMrDuwM/rmeDciS2PbYlSzRO0+cpL754VYtiGHSxIjTQl7XaCmhCJydjEJDnffY2bTgGVEZhmL3H0BQGnjZXQlMNXMiojMSv7L3Q/EomaJNCWc/d4OUl5fT0nY+fFN/bnz8iQ1JRSRc7JTq0XxIzk52dPSPrGaJafJzjnO1NQQ7207xJU92/LYrYPo2rpJ0GWJSEDMLN3dk8tybLX+AKDEXnFJmN/+aytP/X0jDerV4YkJg7ktuYvahYhImSk4apF1u49xb+oaMj86xrX9L+CR8QO5oLmaEopI+Sg4aoGC4hJ++eZmnlu+hZZN6jPz9iHcMLCDZhkicl4UHHEufXukKeHm/ce5dUhnHhzTn1ZqSigiFaDgiFN5BcU8+cYG/vDONjq1aMwf7hrGZ/q0D7osEYkDCo449NamHKbNDbHr8EnuuKwb917fl6YN9b9aRGJDryZx5OiJIh5dtI6/pu2iR9sE/vr1yxjevXXQZYlInFGRB3bBAAAJlElEQVRwxInFmXt5cEEmh/IK+eZnLuR7n+2lpoQiUikUHDXc/tx8pi9cy6LQXvp3bM4LXxnGwM4tgi5LROKYgqOGcnfmrv6Ih19dx8miEu65rg+TR/agfl01JRSRyqXgqIF2HT7BffMy+efGHIZ2a0XKhMH0bN806LJEpJZQcNQg4bDz8qrtpLy+HgceGjuASZd2o46aEopIFVJw1BBbco4zNTWD97cd5qpebfnpLWpKKCLBqNbBYWajgceBBkR2DLzH3d8MtqqqVVQS5vm3snl66SYa16/Lk7ddxIQhndUuREQCE5PgsMirmLl7OBbnO80B4GZ3321mA4ElQOcYX6PayvzoKFNSM1i7+xg3DurA9LEDaN9MTQlFJFjnfQuOmSWZWZaZzQRWA5PMLGRmmWaWctpxE0sZP25mKWaWbmZLzWy4mS03s2wzGwvg7h+4++7ot6wFGplZw/OtuabILyrhicXrGfert9l3rIBff3kIM28fqtAQkWqhojOOPsBdwAxgJTCUyBaxb5jZeCJbx6acOe7u84EEYLm7TzGzedFzjAb6Ay8CC8+41gTgA3cvqGDN1VratkPcm5pBdk4etw3twgNj+tOiSf2gyxIR+X8VDY7t7r7SzMYRCYEcADObDYwEvJTx+UTes1gcPU8IKHD3IjMLAUmnX8TMBhAJoGtLK8TMJgOTARITEyv4sKre8YJifrZ4PS+t3E6nFo156e7hjOzdLuiyREQ+oaLBkRf9Wto7ted6B7fIT+1bGwYKANw9bGb/X5eZdQHmAXe4+5bSTubus4BZENk6tmzlVw8rNuZw39wQu4+e5M7Lkrjnuj4kqCmhiFRTsXp1WgU8Y2ZtiSxJTQSeJbJUdbbxMjGzlsBrwDR3fztGtVYbR04U8sirWaSu3sWF7RKY843LGNpNTQlFpHqLSXC4+x4zmwYsIzLLWOTuCwBKGy+jbwM9gQfN7MHo2LXuvj8WdQdpUWgPP16QyZETRXz7mp58e1RPNSUUkRrBTq0WxY/k5GRPS0sLuoyz2n8snx8vWMvitXsZ2Lk5KRMGM6CTmhKKSLDMLN3dk8tyrBbSq4i787f0Xcx4dR35xWGmXN+Xr13VnXpqSigiNYyCowrsPHSC++aFeGvTAYYntebxCYPo0U5NCUWkZlJwVKKSsPPSu9v42ZINGPDIuAHcPkJNCUWkZlNwVJLN+3O5d04Gq3cc4TN92vHoLYPo3LJx0GWJiFSYgiPGikrC/GbFFn7xj800aViXp75wEeMvVlNCEYkfCo4YCu06yj1z1rB+by5jBnfkobEDaNs07ltriUgto+CIgfyiEp5euonn38qmTUIDfjNpKNcN6BB0WSIilULBUUGrsg8ydW6IrQfy+EJyV+4b048WjdWUUETil4LjPOXmF5GyeD0vr9xB19aNmf3VEVzRs23QZYmIVDoFx3lYtn4/988LsedYPv95ZXd+dG1vmjTQUykitYNe7crhUF4hj7y6jnkffESv9k1J/eblDElsFXRZIiJVSsFRBu7Oqxl7mL5wLUdPFvHdz/biW9dcSMN6akooIrWPguNT7DuWz/3zMlmatY/BXVrw8ldH0K9j86DLEhEJTLUODjNrA8wBhgF/cPdvV9W13Z2/vL+TRxdlUVgc5r4b+3L3FWpKKCISk+CwyMeizd3DsTjfafKBB4GB0V9VYsfBE0ydm8E7Ww4yontrUiYMJqltQlVdXkSkWjvvfz6bWZKZZZnZTGA1MMnMQmaWaWYppx03sZTx42aWYmbpZrbUzIab2XIzyzazsQDunufu/yISIJWuJOz89q1srn16BRm7jvLoLQP509cuVWiIiJymojOOPsBdwAxgJTCUyBaxb5jZeCJbx6acOe7u84EEYLm7TzGzedFzjAb6Ay8CCytYW7kcPVHEnS+8x4c7jzCqb3sevWUgHVuoKaGIyJkqGhzb3X2lmY0jEgI5AGY2GxgJeCnj84FCYHH0PCGgwN2LzCwEJJW3EDObDEwGSExMLPcDad64Ht3aNOGuK5IYe1EnNSUUESlFRYMjL/q1tFfZc736FvmpfWvDQAGAu4fNrNx1ufssYBZEto4t7/ebGc988ZLyfpuISK0Tq1uEVgFXm1lbM6sLTARWnGNcRERqqJjcVeXue8xsGrCMyCxjkbsvAChtvKzMbBvQHGgQfd/kWndfF4u6RUSk/OzUalH8SE5O9rS0tKDLEBGpMcws3d2Ty3KsPs0mIiLlouAQEZFyUXCIiEi5KDhERKRcFBwiIlIucXlXlZnlANvP89vbAgdiWE5Npufi4/R8fJyej1Pi4bno5u7tynJgXAZHRZhZWllvSYt3ei4+Ts/Hx+n5OKW2PRdaqhIRkXJRcIiISLkoOD5pVtAFVCN6Lj5Oz8fH6fk4pVY9F3qPQ0REykUzDhERKRcFR5SZXW9mG8xss5lNDbqeIJlZVzNbFt0aeK2ZfS/omoJmZnXN7AMzezXoWoJmZi3NbI6ZrY/+Hbks6JqCZGY/iP6cZJrZn8ysUdA1VTYFB5EXBeBXwA1Etq6daGb9g60qUMXAj9y9H3Ap8K1a/nwAfA/ICrqIauIZYLG79wUuohY/L2bWGfgukOzuA4G6wBeDraryKTgihgOb3T3b3QuBPwPjAq4pMO6+x91XR3+fS+SFoXOwVQXHzLoAY4DfBl1L0MysOZHtn38H4O6F7n4k2KoCVw9oHN25tAmwO+B6Kp2CI6IzsPO0P++iFr9Qns7MkoBLiOzmWFs9DdxLZIvj2q4HkAO8EF26+62ZJQRdVFDc/SPgSWAHsAc46u5vBFtV5VNwRJxtb/Raf7uZmTUFUoHvu/uxoOsJgpndBOx39/Sga6km6gFDgOfc/RIgD6i17wmaWSsiqxPdgU5Agpl9OdiqKp+CI2IX0PW0P3ehFkw3z8XM6hMJjdnuPjfoegJ0BTA2uoXxn4FRZvZysCUFahewy93/PQOdQyRIaqvPAVvdPcfdi4C5wOUB11TpFBwR7wO9zKy7mTUg8ubWwoBrCoyZGZE17Cx3/3nQ9QTJ3ae5exd3TyLy9+JNd4/7f1GWxt33AjvNrE906LPAugBLCtoO4FIzaxL9ufksteBmgXpBF1AduHuxmX0bWELkrojfu/vagMsK0hXAJCBkZh9Gx+5z90UB1iTVx3eA2dF/ZGUDdwVcT2DcfZWZzQFWE7kb8QNqwafI9clxEREpFy1ViYhIuSg4RESkXBQcIiJSLgoOEREpFwWHiIiUi4JDRETKRcEhIiLlouAQEZFy+T9Q5EnkNl7uqAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# plot\n", - "plt.plot(ages)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### More examples in: https://matplotlib.org/users/pyplot_tutorial.html" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd4VGX2wPHvm5AGoYUkkAKGXkMJoUtTBASpWVddV7HiWtay/lbQZVdddC3rgnXdtZe1E6oigooUC0ICpNBLgIQSekLCTKa8vz9mwkY2ISGZmTt3cj7PkyeZy+Xec2FycvLe955Xaa0RQggROIKMDkAIIYRnSWIXQogAI4ldCCECjCR2IYQIMJLYhRAiwEhiF0KIACOJXQghAowkdiGECDCS2IUQIsA0MOKk0dHROikpyYhTCyGEaWVkZBzTWsdUt58hiT0pKYkNGzYYcWohhDAtpdS+muwnQzFCCBFgJLELIUSAkcQuhBABxpAx9srYbDby8/OxWCxGh2K48PBwEhMTCQkJMToUIYQJ+U1iz8/Pp3HjxiQlJaGUMjocw2itOX78OPn5+bRt29bocIQQJlTjoRilVGul1Eql1FalVK5S6j739iil1Aql1E735+a1CcRisdCiRYt6ndQBlFK0aNFCfnMRQtTaxYyx24EHtdZdgYHA3UqpbsBM4ButdUfgG/frWqnvSb2c/DsIIeqixolda31Ia53p/roY2AokAJOAd927vQtM9nSQQghhdidLynh8SS5FFpvXz1WrWTFKqSSgD7AOaKm1PgSu5A/EVvF3piulNiilNhw9erR20QaAFStW0LdvX5KTk+nbty/ffvut0SEJIbxIa80XWYe4Yu4q3v9xHz/vOeH1c170zVOlVCSQDtyvtS6q6bCB1vo14DWA1NRUv19BW2uN1pqgIM/OCI2OjmbJkiXEx8eTk5PDmDFjKCgo8Og5hBD+obDIwqyFOSzfcoTkhKa8f+sAusY18fp5LyprKaVCcCX1D7TW892bjyil4tx/HgcUejZE38nLy6Nr167cddddpKSk8P7775OcnEyPHj2YMWPGuf0++uijSrdHRkYyY8YM+vbty6hRo/j5558ZMWIE7dq1Y/HixQD06dOH+Ph4ALp3747FYsFqtfr2QoUQXqW15tP1B7h8zipW7TjKw1d2YcFdg32S1OEiKnblKs3fBLZqredU+KPFwDTgaffnRXUN6vEluWw5WFTXw/xCt/gmPDqhe7X7bd++nbfffptZs2YxcOBAMjIyaN68OaNHj2bhwoX079+fGTNm/M/2yZMnU1JSwogRI3jmmWeYMmUKs2bNYsWKFWzZsoVp06YxceLEX5wrPT2dPn36EBYW5tFrFUIYZ//xUh5ekMX3u47Tv20Uz6T1pG10I5/GcDFDMUOAG4BspdQm97ZHcCX0T5VStwL7gas9G6JvXXLJJQwcOJBFixYxYsQIYmJcjdSuv/56Vq9ejVKq0u2TJ08mNDSUsWPHApCcnExYWBghISEkJyeTl5f3i/Pk5uYyY8YMli9f7tPrE0J4h8OpeeeHPJ77ajvBQYonJvfgN/3bEBTk+1luNU7sWuu1QFURXu6ZcFxqUll7S6NGrp+sWld+G6Cq7QAhISHnpioGBQWdq8SDgoKw2+3n9svPz2fKlCm89957tG/f3lOhCyEMsvNIMQ+lZ7Fx/ylGdo7hySnJxDeLMCwe6RVThQEDBrBq1SqOHTuGw+Hgo48+Yvjw4VVur6lTp04xfvx4nnrqKYYMGeLFKxBCeFuZ3cmL3+xk/ItryTtWwvPX9Oatm/oZmtTBj1oK+Ju4uDieeuopRo4cidaacePGMWnSJIAqt9fEyy+/zK5du5g9ezazZ88GYPny5cTGVjpLVAjhp7LyT/HQvCy2HS5mQq94Hp3QjehI/7hfpi40tOAtqamp+vyFNrZu3UrXrl19Hou/kn8PIfzT2TIHz3+9g9fX7CGmcRhPTE7mim4tfXJupVSG1jq1uv2kYhdCiBr6ac9xZqZnkXe8lOv6t+bhcV1pEu5/XVglsQshRDWKLTae/nIbH6zbT5uohnx42wAGd4g2Oqwq+VVi11pLAywuPPNGCOFb3247wp8W5HCkyMJtl7blwdGdiQgNNjqsC/KbxB4eHs7x48frfeve8n7s4eHhRociRL12oqSMvy7JZeGmg3RqGck/rx9Mnza16kruc36T2BMTE8nPz6c+NwgrV76CkhDC97TWLMk6xGOLcym22Lh/VEfuGtGB0AbmmR3uN4k9JCREVgwSQhjq8GkLsxZm8/XWQnq1bsazaT3p3Kqx0WFdNL9J7EIIYRStNR+vP8DfvtiKzelk1viu3DykLcEGtAPwBEnsQoh6bd/xEmamZ/PjnuMMateCp9OSuaSFb5t2eZokdiFEveRwat7+fi/PLd9OSFAQT01N5tp+rQNi8oYkdiFEvbP9sKtp1+YDpxjVNZYnJifTqmngzESTxC6EqDfK7E5eWbmLf363iybhIbx0XR+u6hkXEFV6RZLYhRD1wqYDp3ho3mZ2HDnD5N7x/GVCd6IahRodlldIYhdCBLSzZQ7+sXw7b32/l5ZNwnnrplQu6+Kbpl1GkcQuhAhYP+w+xsz0bPafKOX6AW2YeWUXGvth0y5Pk8QuhAg4RRYbTy3dykc/HyCpRUM+nj6Qge1aGB2Wz0hiF0IElBVbjjBrYTZHi63cMawd94/q5PdNuzxNErsQIiAcO2PlscW5fJ51iC6tGvP6jan0TGxmdFiGkMQuhDA1rTWLNh3k8SW5lFgdPHhFJ+4Y3t5UTbs8TRK7EMK0Dp46y6yFOXy7rZA+bVxNuzq2NF/TLk+TxC6EMB2nU/Phz/t5+sttOJyav1zVjWmDk0zbtMvTAiKxO5yaIEXAPT0mhPhfe4+VMDM9i3V7TzCkQwuemtKTNi0aGh2WXwmIxD567iom9krgvlEdjQ5FCOEldoeTN9fuZc6KHYQ2COLZtJ5cnZooBV0lAiKx7z9Ryvs/7ePuke1pEFx/b5gIEai2HCxiRnoW2QWnGd2tJbMn96Blk8Bp2uVppk/sDqfG5tAcO2Nlzc5jjOwSa3RIQggPsdodvPztLl79bjfNGobwym9SGJfcSqr0apg+sVtsjnNfz8vMl8QuRIDI2HeSGelZ7Co8w9SUBP48vhvNA7Rpl6eZPrFb7U4AGoUGs2LLEU6X2mjaMPB7QQgRqErL7Pz9q+2880MecU3CefvmfozsLAXbxajxgLRS6i2lVKFSKqfCtseUUgVKqU3uj3HeCbNq5RX75D4JlNmdfJF9yNchCCE8ZO3OY4yeu5q3v8/jhoGXsPwPwyWp18LF3Gl8Bxhbyfa5Wuve7o+lngmr5sor9tSk5nSMjSQ9M9/XIQgh6uh0qY2H5m3mt2+uIzQ4iE/vGMRfJ/UgMsz0gwqGqPG/mtZ6tVIqyXuh1E55xR7eIJi0vok8/eU29h4roW20uRejFaK+WJZzmD8vyuFESRl3jmjPfZd3JDykfjXt8jRPzA28RymV5R6qaV7VTkqp6UqpDUqpDUePHvXAaV3OJfaQYKb0SSBIwXyp2oXwe0eLrdz9QSa/+08GMZFhLLp7CDPGdpGk7gF1TeyvAu2B3sAh4B9V7ai1fk1rnaq1To2Jianjaf+rfCgmrEEQLZuEc2nHGOZnFuB0ao+dQwjhOVpr0jPyGTVnFSu2HOGPYzqz6J4h9EhoanRoAaNOiV1rfURr7dBaO4HXgf6eCavmyiv2MPdP+bSUBApOneWnvcd9HYoQohoFp85y09vrefCzzXSIjWTpfUO5e2QHQuTBQo+q050JpVSc1rp8GsoUIOdC+3uDxeaq2MNDXG+M0d1aERnWgPSMAga3j/Z1OEKISjidmv+s28czX25DA49N6MaNg5IIkqZdXlHjxK6U+ggYAUQrpfKBR4ERSqnegAbygDu8EOMFWe3uir2Bq2KPCA1mfHIcS7IO8tdJ3Wkkd9WFMNTuo2eYmZ7F+ryTDO0Yzd+mJNM6Spp2edPFzIq5rpLNb3owllqxnlexA6T1TeSTDQdYlnOYtL6JRoUmRL1mczh5fc0env96JxEhwTx3dS/SUhKkHYAPmL6cLa/YK95J75fUnDZRDZm/MV8SuxAGyCk4zYz0LHIPFnFlj1Y8Pqk7sY2laZevmD6xl4+xh1VYBkspxdSUBF74ZicFp86S0CzCqPCEqFcsNgcvfbuTf63aQ/OGobx6fQpXJscZHVa9Y/pb0RXnsVeUlpKI1rBwY4ERYQlR72zIO8G4F9fwysrdTOmTwNd/GCZJ3SCmr9itdidBChqcd3e9dVRD+reNIj0jn7tGtJdxPSG8pMTqatr17o95xDeN4L1b+jOsk+eeVREXLyAq9vCQ4EoT969SEtlzrISNB04ZEJkQgW/VjqOMnruad3/MY9qgJJY/MEySuh8wf2K3O6p8BPnK5FaEhwSRniEtBoTwpFOlZTz46WamvfUz4SFBfHbHIB6bKNOL/YXpE7vV5vzFjdOKGoeHMLZ7K5ZsPviLBTmEELX3ZfYhRs1ZzcJNBdwzsgNf3DuU1KQoo8MSFZg+sVvszgs2DZqakkiRxc43Wwt9GJUQgaewyMLv3s/gzg8yadkkjMX3DOH/xnSWpl1+yPS/N1ltjiordoAhHaJp1SSc9Mx8xveUO/RCXCytNfMy8pn9+RYsdiczxnbh9qFtZeF4P2b6xG6xO881AKtMcJBicp8EXl+zh6PFVmIah/kwOiHM7cCJUh5ZkM2ancfol9Scp9N60j4m0uiwRDVM/yPXYnMQfoGKHeBXfRNwODWLNsmcdiFqwuHUvP39XsY8v5rMfSeZPak7n0wfJEndJExfsVvtTppGXHjx6g6xjemV2JT0zAJuG9rOR5EJYU67CouZkZ5Nxr6TDO8Uw9+mJsvT2yZj+ordWoOKHVyNwbYeKmLLwSIfRCWE+dgcTl7+difjXljL7qNnmPPrXrxzcz9J6iZk+sRe/oBSdSb0jCckWMli10JUIqfgNBNf/p7nlu/giu4tWfHAcKamJMoT2yZl+sRutVc9j72i5o1CubxLSxZtKsDmcPogMiH8n8Xm4OkvtzHple85dsbKv2/oyyu/SZFJBiZn+jH2mlbs4BqOWZZ7mNU7jnJ515ZejkwI/7Zuz3Fmzs9m77ESrkltzSPjutK04YXvVwlzCIDE7vzFIhsXMrxTDFGNQknPzJfELuqtYouNZ5dt5/2f9tE6KoL/3DqASzvKMpKBxNSJXWuN1e44tyxedUIbBDGxVzwfrtvPqdIymjUM9XKEQviXldsL+dP8bA4VWbhlSFv+b0wnGoaaOg2ISph6jN3m0Dg1Na7YAX7VN5Eyh5MlWYeq31mIAHGypIw/fLKJm99eT6OwBqTfOZi/TOgmST1Amfp/tbJl8arTPb4JnVs2Jj0jnxsGXuKt0ITwC1prvsg+xKOLcjl91sa9l3Xg7ss61Pi3XGFOpk7slS2LVx2lFGl9E/jb0m3sPnpGnqQTAetIkYVZC3NYseUIyQlN+c9tA+ga18TosIQPmHooprwV74V6xVRmcu8EghTMlzntIgBprflk/X5GzVnF6h1HefjKLiy4a7Ak9XrE1BW71X7xFTtAbJNwhnWKYUFmAQ9e0ZmgIHkIQwSG/cdLmTk/ix92H2dA2yieTutJ2+hGRoclfCwgKvba9INOS0nk4GkLP+457umwhPA5h1Pz5lpX066s/NM8OaUHH90+UJJ6PWXyir32if2Kbi1pHN6A9Ix8hnSQObzCvHYcKeaheVlsOnCKy7rE8uSUHsQ1lf4u9ZmpK3ZrLW6elgsPCeaqnvF8mXOYM1a7p0MTwuvK7E5e/GYn419cw77jJbxwbW/enJYqSV2YO7Fb6lCxg6tP+1mbgy+zZU67MJfNB04x8eW1zFmxg7E94vj6D8OZ1DtBmnYJwOxDMe6K/WIeUKoopU1zklo0JD0zn6tTW3syNCG84myZg7lf7+CNNXuIaRzG6zemckU3aY8hfsnUib28Yq/twxZKKaamJDJnxQ4OnCildVRDT4YnhEf9uPs4D8/PIu94Kdf1b8PD47rQJFyadon/VeNSVyn1llKqUCmVU2FblFJqhVJqp/tzc++EWTlLHSt2gCl9EgBYsFGWzRP+qchi45EF2Vz3+k9o4MPbB/DU1GRJ6qJKF5MR3wHGnrdtJvCN1roj8I37tc9YbXWr2AFaRzVkYLso5mfmo7X2VGhCeMS3244wes5qPv55P7cPbcuy+4YxuL3M4hIXVuPErrVeDZw4b/Mk4F331+8Ckz0UV41Y7HWv2ME1pz3veCmZ+096Iiwh6uz4GSv3fbyRW97ZQNOIEObfNYQ/je9GRKj0eBHVq+usmJZa60MA7s+xVe2olJqulNqglNpw9OjROp7WxeKBih1gXHIcESHBzMuQ4RhhLK01izYVcMXc1SzNPsT9ozqy5PeX0rt1M6NDEybis+mOWuvXtNapWuvUmJgYjxzTancSEqwIrmNLgEZhDbiyRys+zzp47oeFEL526PRZbnt3A/d9vInWUQ35/PdDuX9UJ0Jr8ZyGqN/q+o45opSKA3B/Lqx7SDVnsTkI91D70bS+iRRb7KzYcsQjxxOippxOzYfr9jN6zmq+332MWeO7Mv/OwXRu1djo0IRJ1TWxLwamub+eBiyq4/EuitXuvOjOjlUZ1K4F8U3DSZeOj8KH8o6V8Js3fuKRBdn0SGjKV/cP47ah7er8W6io32o8j10p9REwAohWSuUDjwJPA58qpW4F9gNXeyPIqlhsjlq1E6hMUJBiSkoCr363m8IiC7FNwj1yXCEq43Bq3lq7l3+s2E5IUBBPT03mmn6t5clR4RE1Tuxa6+uq+KPLPRTLRbNexELWNTE1JZFXVu5m4aYCpg9r77HjClHRtsNFzJiXxeb804zqGssTk5Np1VQKCeE5pn7y9GIWsq6J9jGR9G7djPSMAm4f2k6qJ+FRVruDV1bu5p8rd9E0IoSXruvDVT3j5H0mPM7Ut9stHq7YwXUTdfuRYnIPFnn0uKJ+27j/JBNeWsuL3+zkqp5xrPjDcCb0ipekLrzC5IndUevOjlWZ0DOO0OAg5mXITVRRd6VldmZ/voWpr/5AscXOWzel8vy1fYhqFGp0aCKAmTqxW+1Oj908LdesYSijusWyePNBytxPtgpRGz/sOsbY59fw5tq9XD+gDcsfGMZlXaQTo/A+Uyd2b1Ts4GoxcKKkjFU7PPOErKhfTp+1MTM9i9+8sY4gBR9PH8gTk5NpLE27hI+Y/Oap0yuJfVinGKIjQ0nPyJde1+KiLM89zKyFORw7Y+WO4e14YFQnr7xHhbgQUyd2T85jrygkOIhJvRN478c8TpaU0VzGQ0U1jp2x8tjiXD7POkSXVo15Y1oqPROlv4swhgzFVCEtJRGbQ7Mk66BXji8Cg9aaBRvzGTVnFctzj/DgFZ1YfM+lktSFoUxdsXvj5mm5bvFN6BrXhPSMfG4clOSVcwhzO3jqLH9akM3K7Ufp06YZz6b1pGNL6e8ijGfaxK619mivmMqkpSTwxBdb2XmkWL5hxTlOp+aDn/fzzJfbcDg1f7mqG9MGJ0l/F+E3TDsUY/XQIhsXMql3AsFBivRM6dMuXPYcPcO1r//Enxfm0Lt1M5Y/MIxbLm0rSV34FdNW7Fb3eqeebClwvpjGYQzvFMOCjfn8cUxn+eatx+wOJ2+s3cvcFTsIbRDEs2k9uTo1UZ4cFX7JtIndYnctiOHNih1cN1G/3VbI97uOMayTZxYIEeay5WARD6VvJqegiNHdWjJ7cg9aSvdP4cdMm9jLK3ZPLbRRlcu7xtIkvAHpmfmS2OsZq93By9/u4tXvdtOsYQj/vD6FK3u0kipd+D3TJvbyij3MyxV7eEgwE3rFk56ZT7HFJk8P1hMZ+04yIz2LXYVnmJqSwJ/Hd5PnGYRpmPbmafnapN6u2MHVp91ic/Jl9mGvn0sYq8Rq5/ElufzqXz9wtszBOzf3Y86ve0tSF6Zi2or9v7NivJ/YU9o0o210I+Zl5vPrfq29fj5hjDU7j/Lw/GzyT57lxkGX8NDYLkSGmfZbRNRjpn3Xllfs3h6KAVBKkZaSwHPLd3DgRCmtoxp6/ZzCd06X2njiiy18lpFPu+hGfHrHIPq3jTI6LCFqzcRDMb65eVpuSkoiSiGLXQeYZTmHGTV3FfM3FnDniPYsvW+oJHVheqat2K0+unlaLqFZBIPatWB+ZgH3Xd5RZkaYXGGxhccW57I0+zDd4prw9k396JHQ1OiwhPAIqdgvQlpKIvtPlLI+76TPzik8S2vtasc8ZzVfby3kj2M6s+ieIZLURUAxbWK3+ugBpYrG9mhFw9Bg0mXZPFPKP1nKtLfX8+Bnm+kQG8nSe4dy98gOhASb9ttAiEqZdijG4oOWAudrFNaAsT1a8UX2IR6b2J2IUFlAwQycTs37P+3jmWXbAHh8YnduGHgJQdIiQgQo05YqvpwVU9GvUhI5Y7WzfIvMaTeD3UfP8Ot//8iji3Ppe0lzvrp/GNMGJ0lSFwHNtBV7+Tx2b/Vjr8rAdi1IaBZBemYBk3on+PTcouZsDievrd7DC9/sJCIkmOeu7kVaSoLc9Bb1gnkTu3tZPF9/owYFKab0SeCf3+3iSJFFmkH5oZyC08xIzyL3YBHjklvx2MTuxDaW/ydRf5h6KMaoRYKnpiTg1LBgo/Rp9ycWm4Nnl21j0ivfc6TIyr9+m8I/r+8rSV3UO+at2L24LF512sVEktKmGekZ+dwxrJ38eu8H1uedYEZ6FnuOlnB130Rmje9G04bSsE3UT1Kx19LUlER2Fp4hu+C0YTEIOGO185dFOVz9rx+x2py8d0t//n51L0nqol7zSMWulMoDigEHYNdap3riuBdisTl9Oof9fBN6xvPXz7cwP7NAVqQ3yKodR3lkfjYHT5/lpsFJ/HFMZxpJ0y4hPDoUM1JrfcyDx7sgq93h0zns52vaMIQrurZk0aYCHhnXlVCDhoXqo1OlZed+qLaPacRndwwiNUn6uwhRzrTZyOiKHSCtbwInS22s3F5oaBz1ydLsQ4yas4rFmw5yz8gOfHHvUEnqQpzHUxW7BpYrpTTwb631a+fvoJSaDkwHaNOmTZ1PaLU7DP+1e1jHGKIjw0jPyGdM91aGxhLoCoss/GVRLstyD9MjoQnv3tKf7vHS30WIyngqMw7RWh9USsUCK5RS27TWqyvu4E72rwGkpqbqup7QYnMS1cjYir1BcBCTe8fz7o95nCgpI0pW2fE4rTWfZeTzxOdbsNidzBjbhduHtqWB9HcRokoe+e7QWh90fy4EFgD9PXHcC7HYHYQZOCumXFrfRGwOzeJNMqfd0w6cKOWGN3/moXlZdGnVhGX3DeXOEe0lqQtRjTp/hyilGimlGpd/DYwGcup63OpYbcbNY6+oa1wTusU1Yb48rOQxDqfm7e/3MnruajbuP8nsSd35ePpA2sVEGh2aEKbgiaGYlsAC90M6DYAPtdbLPHDcC7LajZ3HXlFa30Rmf76FnUeK6diysdHhmNquwmIempdF5v5TjOgcw5NTkkloFmF0WEKYSp1LXq31Hq11L/dHd631k54IrDoWm9Oni2xcyKTe8TQIUsyTZfNqzeZw8vK3Oxn3wlr2HCth7jW9ePumfpLUhagF0z7NYbU7fN6ytyrRkWGM6BzDwo0FPDSmC8HSEvaiZOef5o/zNrPtcDHje8bx+MTuREeGGR2WEKblH5nxIjmcGptD+03FDq4WA0eKrKzd5bNntEzPYnPw1JdbmfTKWk6UlPHvG/ryym9SJKkLUUemrNiNWBavOpd3jaVpRAjpGfkM7xRjdDh+b92e48ycn83eYyVck9qaR8Z3pWmE9HcRwhNMmdj/uyye/yT2sAbBTOgVx2cb8imy2GgSLkmqMsUWG88s28Z/ftpP66gIPrhtAEM6RBsdlhABxX8y40UoXxbPX2bFlEtLScRqd/Jl9iGjQ/FLK7cVMmbuaj5Yt59bL23LV/cPk6QuhBeYsmIvXxbP3xJ779bNaBfTiPSMAq7pV/e2CYHiREkZsz/fwoKNBXSMjST9zsGktGludFhCBCxTJvZzC1n70VAMgFKKtJRE/v7VdvYfL6VNi4ZGh2QorTWfZx3iscW5nD5r497LO3L3yPaGduUUoj7wr8xYQ/46FAOuZfOUgvR6Pqf9SJGF29/L4PcfbSSheQRLfn8pf7iikyR1IXzAlBV7+VCMv1XsAHFNIxjSPpr5G/O57/KOBNWzOe1aaz5Zf4Anl26lzO7kkXFduGWINO0SwpdM+d12bijGDyt2cPVpP3DiLOvzThgdik/tP17K9W+sY+b8bLrFNeGr+4cxfZg07RLC10xdsfvTPPaKxnRvRaPQHNIz8xnQroXR4XhdedOu55Zvp0FQEE9O6cF1/drUu99WhPAXpkzs/7156p8Ve8PQBlyZHMfS7MM8PrEHEaH+GacnbD9czIz0LDYdOMVlXWJ5ckoP4ppKfxchjOSfJW81rDb/rtjBNaf9jNXOV7mHjQ7FK8rsTp7/egdXvbSG/SdKeeHa3rw5LVWSuhB+wJQV+39bCvhvJTygbRQJzSJIz8xncp8Eo8PxqM0HTvHQvCy2HylmYq94Hp3QjRbS30UIv2HKxO6PLQXOFxSkSEtJ4KWVuzh0+mxAVLJnyxzMWbGdN9fuJbZxOG/cmMqobi2NDksIcR7/zYwX4M/z2CuampKI1rAgAFZX+nH3cca+sJrX1+zlmn5tWP6HYZLUhfBTpkzsVruTIAUN/HzWRVJ0I1IvaU56Rj5a13n9bkMUWWw8PD+b617/CYAPbx/AU1OTpcmZEH7MlIndYnMti+dejs+vpfVNZPfRErLyTxsdykX7essRRs9ZzSfr9zN9WDuW3TeMwe2laZcQ/s6Uid1qd/r9MEy58T3jCGsQZKoWA8fPWLn3o43c9t4GmkaEMP+uITwyrmtAT9sUIpCY9Oapw69vnFbUJDyE0d1bsXjzQf40vqvfzr0HVzuAxZsP8tjiXM5Y7TwwqhN3jmhPqEn+rYUQLqb8jrWYqGIHSEtJ4FSpjZXbCo0OpUqHTp/ltnc3cN/Hm2jTohHDkTP5AAAQDElEQVSf/34o943qKEldCBMyZcVuNVHFDnBph2hiGocxL6OAsT3ijA7nF5xOzUfr9/PU0m3YnU5mje/KzUPayoLcQpiYKRO7xe702wZglWkQHMSUPgm8tXYvx89Y/eZhnrxjJcycn8VPe04wuH0LnpqazCUtGhkdlhCijsxT9lZgsTkIN1HFDq4WA3anZtGmg0aHgt3h5LXVuxnz/GpyC4p4emoyH9w2QJK6EAHClBW71e403Yr2nVs1pkdCE9Iz87nl0raGxbH1UBEz0rPIyj/NqK4teWJyD1o1DTcsHiGE55mr7HWzmrBiB1fVnnuwiG2Hi3x+bqvdwZwVO5jw0loKTp7lpev68PqNfSWpCxGAzJcdMdc89oom9oqnQZBifqZvWwxk7j/JVS+u5cVvdjKhVzwr/jCcCb3iTfGAlxDi4pkysZtpHntFLSLDGNkllgUbC7A7nF4/X2mZndmfbyHt1R84Y7Xz1k2pzL2mN1GNQr1+biGEcUw5xl7eUsCM0lISWbHlCGt2HWNk51ivnef7XceYOT+LAyfO8tuBbZgxtguNpb+LEPWCR8pepdRYpdR2pdQupdRMTxzzQlxDMear2AEu6xJL84YhpGd4p8XA6bM2ZszL4vo31tEgKIhPpg/kicnJktSFqEfqXLErpYKBV4ArgHxgvVJqsdZ6S12PXRmttXsoxpwVe2iDICb2iuej9Qc4fdbm0dk9y3MPM2thDsfOWLljeDseGNXJtL/ZCCFqzxNlb39gl9Z6j9a6DPgYmOSB41bK5tA4tX8vi1edtL6JlNmdfJF1yCPHO1ps5e4PM5n+fgZRjUJZePcQHr6yqyR1IeopT4yxJwAHKrzOBwacv5NSajowHaBNmza1Pln5snhmrdgBkhOa0jE2kvTMfH4zoPb/FlprFm4q4PElWyi1Onjwik78bkR7QoLN+0NPCFF3nsgAlc2Z+59VJbTWr2mtU7XWqTExMbU+mcUEC1lXRynF1JREMvadZO+xklodo+DUWW5+Zz0PfLKZttGN+OLeS/n95R0lqQshPJLY84HWFV4nAl57bv5cxW7yYYYpfRIIUjD/Ivu0O52a93/MY/ScVazbc4JHJ3Rj3u8G07FlY+8EKoQwHU8MxawHOiql2gIFwLXAbzxw3EqZYSHrmmjVNJwhHaKZn1nAA6M6EVSDbop7jp5hZno2P+ed4NIO0Tw1NZnWUQ19EK0QwkzqnB211nbgHuArYCvwqdY6t67HrYpZFrKuiV/1TaTg1FnW7T1xwf3sDievfrebsS+sYdvhIp79VU/ev7W/JHUhRKU88oCS1nopsNQTx6qO1V4+xm7+xD66WysiwxqQnpnPoPYtKt1ny8EiHkrfTE5BEWO6t2T2pB7ENpH+LkKIqpluPMNqK58VY7rQ/0dEaDDjk+P4MvsQpWX2X/yZxebgua+2M/HltRw+beGf16fwr9/2laQuhKiW6bKjxR44QzHgmtNeUuZgWc7hc9sy9p1g/ItreHnlLib2jmfFA8MZlxwnTbuEEDViul4x1gCY7lhRv6TmtIlqSHpmPmO6t+LvX23n3R/ziG8awTs392OEF/vJCCECk+kSuyUAHlCqyDWnPYHnv95J8mNf4dQwbdAl/HFsFyLDTPffI4TwA6bLHIFWsZ8utfHj7uMAODV89rtB9EuKMjgqIYSZmS6xW2yBU7EvyznEnxflcqKkDICEZhGkXtLc4KiEEGZnurLXYjd/xV5YbOHO/2Twu/9kEhMZxqK7h/BMWjIFp86y8cApo8MTQpic6bKj9dyTp+ar2LXWzMvI54o5q/lmWyF/HNOZRfcMoUdCU8YlxxEeEuS1Pu1CiPrDdIndYncQEqwIrsEj+P7kwIlSbnzrZ/7vs810jI1k6b1DuXtkh3NNuxqHhzCmeyuWbD54rh+OEELUhvkSu81BuImqdadT8873exnz/Goy9p3k8Ynd+fSOQXSIjfyffdNSEimy2Pl2a6EBkQohAoXpbp5a7U7TdHbcVXiGmelZbNh3kmGdYvjblB4kNq+6v8uQDtG8fmMqwzvVvq2xEEKYLrG7lsXz7180bA4nr63ewwtf7yQiNJjnru5FWkpCtU+OBgcprujW0kdRCiEClekSu9Xm3wtZ5xSc5qF5WWw5VMS45FY8NrE7sY2lv4sQwnfMl9jt/rmQtcXm4IVvdvLa6j1ENQrlX79NYWyPOKPDEkLUQ6ZL7BY/rNjX551gxrws9hwr4eq+icwa342mDUOMDksIUU+ZLrFb7Q6/6ex4xmrn2WXbeO/HfSQ2j+D9W/sztKPc+BRCGMt0id1ic/pFc6zvthfypwU5HDx9lpsGJ/HHMZ1p5AdxCSGE6TKRxWZsxX6ypIzZX2xhfmYB7WMaMe93g+h7iTTtEkL4D9MldqvdaUhi11rzZc5h/rIoh1OlNu4Z2YF7LuvgN8NCQghRznSJ3Yh57IVFFv68KIevco/QI6EJ797Sn+7xTX0agxBC1JQpE7uvqmStNZ9tyGf2F1soszuZeWUXbru0LQ2C/WtWjhBCVGS6xG61O31SsR84UcrD87NZu+sY/ZOieDotmXYx/9vfRQgh/I2pErvW2uu9YhxOzbs/5PH3r7YTpGD25B5c378NQSbrJimEqL9MlditXl5kY+eRYmakZ5G5/xQjOsfw5JRkEppFeOVcQgjhLeZK7F5aZKPM7uTfq3bz0re7aBgWzNxrejG5d/VNu4QQwh+ZKrFb3AtQeLJiz8o/xUPzsth2uJiresbx2MTuREeGeez4Qgjha6ZK7OUVuycW2rDYHMxdsYPX1+whOjKM127oy+jurep8XCGEMJqpEnt5xR5Wx4r9pz3HmZmeRd7xUq7t15qHx3WlaYQ07RJCBAZzJXabeyimlhV7scXG019u44N1+2kdFcEHtw1gSIdoT4YohBCGq1NiV0o9BtwOHHVvekRrvbSuQVWlfFZMbSr2ldsKeWRBNoeLLNx6aVseHN2JhqGm+rkmhBA14onMNldr/ZwHjlOtcxX7RcxjP1FSxl+X5LJw00E6xkaSfudgUto091aIQghhOFOVrBdz81RrzZKsQzy2OJeiszbuvbwjd49s75erLwkhhCd5IrHfo5S6EdgAPKi1PlnZTkqp6cB0gDZt2tTqRDW9eXr4tIVZC3P4eusReiY25dnbB9ClVZNanVMIIcym2sSulPoaqGwe4J+AV4HZgHZ//gdwS2XH0Vq/BrwGkJqaqmsTrKWail1rzcfrD/C3L7ZS5nDyp3FduXlIkjTtEkLUK9Umdq31qJocSCn1OvB5nSO6AOsFHlDad7yEmenZ/LjnOAPaRvFMWk+Soht5MxwhhPBLdZ0VE6e1PuR+OQXIqXtIVbNU0lLA4dS8/f1enlu+nQZBQfxtSjLX9mstTbuEEPVWXcfYn1VK9cY1FJMH3FHniC6gfFZM+Rj79sPFPJSexeYDp7isSyxPTulBXFNp2iWEqN/qlNi11jd4KpCaKJ/HrhQ8//UOXlm5i8bhIbxwbW8m9oqXpl1CCIHppjs6CFIw8aXv2X6kmEm94/nLVd1oIU27hBDiHHMldrsTp4bTZ228cWMqo7q1NDokIYTwO6ZK7OOS42gYGszvRrSnSbg07RJCiMqYKrH3bxtF/7ZRRochhBB+TZ7cEUKIACOJXQghAowkdiGECDCS2IUQIsBIYhdCiAAjiV0IIQKMJHYhhAgwktiFECLAKK1rteZF3U6q1FFgX4VN0cAxnwfiO4F+fRD41yjXZ36BcI2XaK1jqtvJkMT+P0EotUFrnWp0HN4S6NcHgX+Ncn3mVx+usZwMxQghRICRxC6EEAHGXxL7a0YH4GWBfn0Q+Nco12d+9eEaAT8ZYxdCCOE5/lKxCyGE8BBDE7tSaqxSartSapdSaqaRsXiKUuotpVShUiqnwrYopdQKpdRO9+fmRsZYF0qp1kqplUqprUqpXKXUfe7tAXGNSqlwpdTPSqnN7ut73L29rVJqnfv6PlFKhRoda10ppYKVUhuVUp+7XwfMNSql8pRS2UqpTUqpDe5tAfEerQnDErtSKhh4BbgS6AZcp5TqZlQ8HvQOMPa8bTOBb7TWHYFv3K/Nyg48qLXuCgwE7nb/vwXKNVqBy7TWvYDewFil1EDgGWCu+/pOArcaGKOn3AdsrfA60K5xpNa6d4UpjoHyHq2WkRV7f2CX1nqP1roM+BiYZGA8HqG1Xg2cOG/zJOBd99fvApN9GpQHaa0Paa0z3V8X40oMCQTINWqXM+6XIe4PDVwGzHNvN+31lVNKJQLjgTfcrxUBdo2VCIj3aE0YmdgTgAMVXue7twWillrrQ+BKjECswfF4hFIqCegDrCOArtE9RLEJKARWALuBU1pru3uXQHivPg88BDjdr1sQWNeogeVKqQyl1HT3toB5j1bHyDVPVSXbZIqOSSilIoF04H6tdZGr4AsMWmsH0Fsp1QxYAHStbDffRuU5SqmrgEKtdYZSakT55kp2Ne01AkO01geVUrHACqXUNqMD8iUjK/Z8oHWF14nAQYNi8bYjSqk4APfnQoPjqROlVAiupP6B1nq+e3NAXSOA1voU8B2uewnNlFLlhZDZ36tDgIlKqTxcQ6CX4argA+YatdYH3Z8Lcf1w7k8AvkerYmRiXw90dN+JDwWuBRYbGI83LQamub+eBiwyMJY6cY/Fvgls1VrPqfBHAXGNSqkYd6WOUioCGIXrPsJK4Ffu3Ux7fQBa64e11ola6yRc33ffaq2vJ0CuUSnVSCnVuPxrYDSQQ4C8R2vC0AeUlFLjcFUKwcBbWusnDQvGQ5RSHwEjcHWSOwI8CiwEPgXaAPuBq7XW599gNQWl1KXAGiCb/47PPoJrnN3016iU6onrxlowrsLnU631X5VS7XBVt1HARuC3WmurcZF6hnso5v+01lcFyjW6r2OB+2UD4EOt9ZNKqRYEwHu0JuTJUyGECDDy5KkQQgQYSexCCBFgJLELIUSAkcQuhBABRhK7EEIEGEnsQtSCUqqFu8vlGaXUy0bHI0RFRrYUEMLr3A9UKa21s9qdL44F+DPQw/0hhN+Qil0EHKVUkrtf/D+BTOAGd2/uHKXUMxX2u66K7WeUUs+4G0h9rZTqr5T6Tim1Ryk1EUBrXaK1XosrwQvhVySxi0DVGXgPV2va2bj6ofQG+imlJiul4nH1H//FdvffbQR8p7XuCxQDTwBXAFOAv/r0KoSoBRmKEYFqn9b6J6XUJFxJ+iiAUuoDYBiuzoWVbV8IlAHL3MfJBqxaa5tSKhtI8u1lCHHxpGIXgarE/bmqfsIX6jNs0//tteHEtaoS7nF6KYaE35PELgLdOmC4UiravRzjdcCqC2wXwvSk+hABTWt9SCn1MK6WtApYqrVeBFDV9ppy9zNvAoS6x+dHa623eDJ+IWpDujsKIUSAkaEYIYQIMJLYhRAiwEhiF0KIACOJXQghAowkdiGECDCS2IUQIsBIYhdCiAAjiV0IIQLM/wOHK332BeqfzwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "data = read_csv('ages.csv', sep=',')\n", - "data.plot(x = 1, y = 2)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/.ipynb_checkpoints/notebook_analysis_CVS_to_ROOT_cpp-checkpoint.ipynb b/.ipynb_checkpoints/notebook_analysis_CVS_to_ROOT_cpp-checkpoint.ipynb deleted file mode 100644 index 5180d92f..00000000 --- a/.ipynb_checkpoints/notebook_analysis_CVS_to_ROOT_cpp-checkpoint.ipynb +++ /dev/null @@ -1,309 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "
" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

Simple CVS to ROOT C++ notebook example

" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false, - "inputHidden": false, - "outputHidden": false - }, - "outputs": [], - "source": [ - "//%jsroot on" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "#include \"Riostream.h\"\n", - "#include \"TString.h\"\n", - "#include \"TFile.h\"\n", - "#include \"TTree.h\"\n", - "#include \"TSystem.h\"\n", - "#include \n", - "#include " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Download the data" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "//This two lines can be commented out. You just need it once, and in case the CVS file was not provided already\n", - "//system(\"wget https://docs.google.com/spreadsheets/d/1nH8J5PViu8yRVMAY5q3ydS6Onqv5ZOh3tdeM5MP9YQo/export?format=csv -O ages.csv\");\n", - "\n", - "//If the file is downloaded with the line above, you *need* to remove the first line of the CSV file" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Create a ROOT file to save the data that now is in the CSV" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "TString dir = gSystem->UnixPathName(__FILE__);\n", - "dir.ReplaceAll(\"ages.C\",\"\");\n", - "dir.ReplaceAll(\"/./\",\"/\");\n", - "\n", - "TFile *f = new TFile(\"ages.root\",\"RECREATE\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Read the CSV file and save the values into a ROOT file" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false, - "scrolled": true - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "TTree::ReadStream:0: RuntimeWarning: Couldn't read formatted data in \"room1\" for branch room1 on line 1; ignoring line\n", - "TTree::ReadStream:0: RuntimeWarning: Read too few columns (2 < 11) in line 1; ignoring line\n", - "TTree::ReadStream:0: RuntimeWarning: Read too few columns (10 < 11) in line 7; ignoring line\n", - "TTree::ReadStream:0: RuntimeWarning: Read too few columns (10 < 11) in line 8; ignoring line\n", - "TTree::ReadStream:0: RuntimeWarning: Read too few columns (10 < 11) in line 9; ignoring line\n", - "TTree::ReadStream:0: RuntimeWarning: Read too few columns (10 < 11) in line 10; ignoring line\n", - "TTree::ReadStream:0: RuntimeWarning: Read too few columns (10 < 11) in line 11; ignoring line\n", - "TTree::ReadStream:0: RuntimeWarning: Read too few columns (10 < 11) in line 12; ignoring line\n", - "TTree::ReadStream:0: RuntimeWarning: Read too few columns (10 < 11) in line 13; ignoring line\n" - ] - } - ], - "source": [ - "TTree *tree = new TTree(\"data\",\"data from csv file\");\n", - "// The file inside has --------> \"Room\",\"room1\",\"room2\",\"room3\",\"room4\",\"room5\",\"room6\",\"room7\",\"room8\",\"room9\",\"room10\"\n", - "tree->ReadFile(\"ages.csv\",\"Room/C:room1/f:room2/F:room3/F:room4/F:room5/F:room6/F:room7/F:room8/F:room9/F:room10/F\",',');\n", - "f->Write();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's plot some stats of the files" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "-rw-r--r-- 1 summerstudent users 462 Aug 21 17:02 ages.csv\r\n", - "-rw-r--r-- 1 summerstudent users 6.5K Aug 21 17:14 ages.root\r\n", - "\r\n", - "This dataset contains the below number of data points / rows\r\n", - "12 ages.csv\r\n" - ] - } - ], - "source": [ - "system(\"ls -lhrt ages*\");\n", - "system(\"echo\");\n", - "system(\"echo 'This dataset contains the below number of data points / rows'\");\n", - "system(\"wc -l ages.csv\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's open the new root file" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [], - "source": [ - "TFile *_file0 = TFile::Open(\"ages.root\");" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Let's do some visualisations" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAswAAAGICAIAAADakiGqAAAABmJLR0QAAAAAAAD5Q7t/AAAgAElE\nQVR4nO3dQY/kxnXA8aJhIDnnE/hLOFoZyDbbkqXcfQiQXKSLFvAhcRDfgt1mS/ExgGIgAXYv8kWG\nAyR3x/amyTUQS8iXyDdhDrVTW0Oy2WySVfXq1f8HwZ7t6empmiZZr1+9KlZ93xsAAIC9fSd1AwAA\ngE4EGQAAIAiCDAAAEARBBgAACIIgAwAABEGQAUhR13XbtqlbMadpmrqu67pummb+mW3bVlVVVVWU\ndt22vOXLtW1b1/XgEVG9BpIjyABEaNu267rUrbjKDp/n89n+83w+zw+ldiwXskLettz+eW3Ldwnm\nmqYZvGV1XV8uF/PQfQDfTd0AoHRt27Zt68ZvmQZBQ9u2x+NxPvVyOByiNO0G2/LL5eKyDlVVHY/H\nLQFQ0zTXgsJBbgMoHJkM4O2YYYwZpNPnc+zXvmuDBvcE912bXR8PzMfjcSbCcG2L307/+V3X+UHD\nvUOp/7uWt3yyJfe23P3F3COn08k9vkLTNC4vAuCGHiieeRh4jDGHw8E9OHOyzHzXDcaHw8H/2ngf\n7k+n06ANNs1+uVzGD/pN8l8wZjsvl8ugbX4bxuxrDp7sXnzQgMmWz3zXb6Tf1MmWHw6HwV/bPtN2\nZ9Cpu9jfNX588v0FykSQAfSDYbt/GD/cCDQY7Jd81w0zLnzxf914eJ4MMuyPuwfH7fTHy3FL5r+7\nup2Xy2XwFxgb/Oy1lvtBzLjl1767pOWTw//4u4OI5C4zQcZM+AUUhSADmBiTxuOEP6LMf3cw9tgB\n0h/GJofAa0FGwnZODqIurzA/MN/s8vgRGyss+e64YUta7vo4+Dv7Say7EhvXfsu1x4ECUZMBGDNV\npTgoO7jrn2P+E7ZURN5spy1HcAUH898du9mRvu8vl8vpdDqfz9eebB+/+VJudPd/yrVt/rsr1HV9\nPB7N4yJQY0zTNP1D/HE8HquqGhd53LX21T6TBSaAofATGBuXChpvkJsc57YPgSvM/7pwjbEj7uFw\nuFb8aKtEB3/AhItN7PrbrutstmMy+rEFuXYmaHKB7vK/Z13X9kW2tRrQgCWswJCLGPzRaDLyWPjd\nQCZ/3ZJ23qttW7sqxH/Zuq6vBRmXy+V4PI73qrqrMXsFSXa1rVm2aYdbmGrzKOOlQEvY/TPc1AxQ\nMjIZwLTBJ9H5fybcqXO+JZPfvTcYsvHE4JVvzrnc/JsMYhQ7v+DaNv/d5ZZsC2bjIbtnl812bJns\naNt2nMgBykSQAUywH2TdSGO/cFUC7mOu+65Nxe/eDJvnnxnw5luyYztt/t/fsWOwc8b4+fNBhv2g\nf61tk99dN+Fig5V6xL2y3ZvLPFSDbq+lYAsN4J1UFaeAHGZqzeFgMJ7ca2Hyu5OrNvxlC5OrD5bv\nkzHfzsETZr57bzsHl475VZqT+2QEanl/fXXJzJyF7en4nV2OfTKAm6pexs0FAJkElmJMitPOa4tW\nxpZXwubyF16uqqrT6cTqEsAYQ5ABYH9JltsIQZABONRkANifrRUtcKBdXaAKqEQmA0AQNs4o6gpj\nl8uSxgAcggwAABAE0yUAACAIggwAABAEQQYAAAiCIAMAAARBkAEAAIIgyAAAAEEQZAAAgCAIMgAA\nQBAEGQAAIAiCDAAAEARBBgAACIIgAwAABEGQAQAAgiDIAAAAQRBkAACAIL6bugEAIEJVVf4/+75P\n1RJADYIMAMUZxBOWiyqqqur73j6HUAPYgiADgFqTwYRZFjrY57hXINoAViDIAKDBfHJiNT+9scsL\nAkUhyACQmUDxxDw/sUGoASxEkAFAriTxxAzmUIC7EGQASG9L8UR8zKEACxFkAIhKWnJiCxIbwDyC\nDAChaIonZpDYAK4hyACwg0LiiXkUhwIDBBkA7pBX8UQSzKEADkEGgGkkJ7ZgDgUwBBkADPFESCQ2\nUDKCDKAgTHakQmIDZSLIAHQiOSETxaEoCkEGkD3iiewwh4JCEGQAOSGeCMfe4T3mb2QOBeoRZAAS\nUTwRmgsp3Bfjv220sIPEBrSKHbkDGCA5EcE4pFjy5FRIbEANggwgHuKJoMaRxLpwYfxTScIOEhtQ\ngCADCIJ4IrSNkcSSV77rW+GQ2EC+CDKATSieCGqv5MS6X7rxOfsi1ECOCDKApUhOhBYzkljSjN2f\nvB1zKMgLQQYwgXgiAiEhxZi09kwisYEsZHAuAUERTwSVZL5jo73KRSMgsQHhpJ/twF4onoggo0hi\nxsbGUxwKOBlfCIBrSE7EoSOkGNurOxSHAqouDSgQ8URoOc53bBRzTWwIzKFADuUXC2hCPBFBOZHE\nDDV9J7GB5JScS9CE4onQCkxO3CXcX4PiUJSGKwtSIjkRAZHEvYTs9xXilxrOL8TFRQeREE/EQUix\nXcw/XariUMPZhyi4DGF/xBOhMd8RVKo0A0tRoA8XJqxH8UQcRBKRFfV3JtRAUAWdS9iC5EQ0hBTJ\nZXTnlB1/qf2CQw774iqGIeKJCJjvkEzIe0FxKBQQcS4hFeKJOIgk8iLtbaI4FPmSdS4hEIonIiA5\noYbYN47iUGRH6LmE1UhOxEEkoRjv6QChBlbjXMoY8UQ0hBRFkf8uUxyKXEg/l2CY7IiF+Q5YGb3v\nFIdCuGzOpUKQnIiGSALX5HhIUBwKmfI7l9QgnoiJkALLZX2QUBwKUTI+lzJCPBEH8x3YBYfNCoQa\nmMS5tCeKJ2IikkAgOo4oikMhgYZzKQmSE5ERUiAaZccYxaFISNW5FAjxRDTMd0ACrUcdxaGIT+e5\ntBrxRExEEpBJ/QFJcSiiUX4uXUPxRDQkJ5ARe3ByiAZCYqNA+s8lkhMxEUkgI9cO13IO41QdJLFR\nDp2nkB9YqOygEOVci5GvFbm0Ao9nikMRiJJzaZyusDlPwxG8GfMdyMguR+n4Z8s55ikOxb50njn+\neUKocRciCcgXOvCdebVyzguKQ7ELnSfM5AcR+4XK/q5GSAH54h+lS34Rp0wgXKuV+U7qBkTSP6iq\n6trSEq1cf8dfuNOY8xlpZXeUDnKlikXuYMnXapV0BuNLCrvsF/q6T3IC8gk/SmW2KjmKQ7FCKZmM\ngdyD5ew+9qFkhRylOV5J7pIkeeNfqNX/hVXSGbDfG3ELD5aFf+wDjK5VSBtbnm/H70VxKG7SeTKs\nO/SFzKEouEZDPd1H6V6dUvnHkUDItRpLKDkHJvfJ2PhqQf8ymj72Qatij9Ldu6n+78bOobhG56G/\nyxG/Y7Bc2jUaOeIodfgLrJawONQQbYik81zafWcec8/hy8Ua8nGUzgj3Nynnr81SFFiFri65y+Q6\nFNZ3QD6OUmnK2V0jyXGV9ZpBrXSG1eGmVMnLQSySE3uJ+QdU/2alLdcwXKtTyyyT0TRN0zSBXnzh\nxz6CZSREckIZ9bmNVB3kWi1ENkFG27Z1XZ/P571ecMk1euZizeGLCDYepciI+vcxbbTBdl6pZBNk\nGGPqul79s4E+9nH4YjuSE/Cpv5Ik3DmUT4bxfTd1A5aq67qu67Zt7T8XHiVuOjDoxXpwzjAeYMa4\ncoLkBHz+9UT3kZCqONRwrY4omyBjYP7giFbyU1WvHn7RZ+bx4Rvht0O+JSEFMKmcaCN+B7lWR5PT\ndEkuyMuVhvkOBEVxaLjfy7U6NIKMgDh8VaIYE6moP64oDtWHICM4Dt8ckZyAZOqvJBSHqkGQEQmH\nr2QkJ5AX9RMoTqriUK7Ve8ms8NOtLskXBUfJUYwJNSgODYdr9S7IZKRBYiM05jtQFPW5DYpDM5VZ\nJuOafN97Fm3vgs0nAEv9cZ4qeUNiYx0lQcbg/c4u5uDwXWIcSTDfAVyjfgIlSbQxSKjo/gvvQudR\nGOeYcztxWXY/rp1emcOXe4oiGWWHnLLuiMInw5uoyZCowFWvVE4Agagv13Did5CKjZsIMuTSd/hS\njAkkpD7aSNhBZdfqHRFkZCDTw5fNJ5CXvM6vLdSfd2mXohSVhL6JICMbMg9fkhPI1MwRO36OVuo7\nmCTa0JeE3oIgIzNpD1+SE8jLxiCY+QU1klyXZH4yjExJkFE9lro5MYQLNUhOIFPhgmD1B3w50QbF\noZEpCTL6x1I3J57tkTLJCWQqSRCsfpBQH21QHBqZkiCjcMsjZZITyIu0vJr6MdhRf0GgODQOggxV\nBoevkOsysFBGebVyog31HaQ4NCiCjOxNXpfdtFHF5qEQRlpyYiP10Yb6DjoJjzrFoYaSe5eoV626\nbQdxBpJbcsTqODh19GKGH23o7mygDk6GEepjOIIMifa9Lvuhxl0/CNzrriBYK/VjsPpoY3sH5+OJ\noigJMrKOAeNclwfxcpmHO3axLq9WDvVjsKO7d2bZW0k8MU9JkDF4RwXGHHKuyyQ2cJdy5jt2V060\nob6DtkLz2rciNyYvSoIMaeRfl0lswCcnCFZJfbShrIMkJ3YkZXVJ27Ybn5DUM/t/ORbJF7KMCr6M\nVooqo/6vml0ZYzWlnzL+wSQNzk76IKNt26qqjsdjVVWTkUTTNO4JTdPEbt8Vj4+wl/b/8r2C+KEG\nJ48yOlaKKqP+LBMYbayOJyYJ7KBM6VNbVVWdTqemadq2PR6Pg/b4D04+4dpr7tKvmRxyVb0aP7/v\nP9v+SyVgDiU7M8cq7hXzT8fbFEKS+Y6Nb6XWIyFxJsOmLmx+oq5rMzstYp+wu/HnPHLIzKEIx7Gq\nRjkfiAN1cN/8xBblvJV3kVX4eTgc2rb1gwn7dV3XdV23bXs4HNa98l11bVydLfeH8v+JaCjGLIqy\n2smx7R3MpR5TYJMSSp/JGMQN40zG6XTquq5t267rXPwxGb2OSwr4nLed+xxAYiMokhOw1L/LSz7x\nJ8lPVNUr+99+L8gFM3Umo67r8/k8eMT/Z9M05/PZPyhtVmP+2OLDdwgkNnZEcgI3aU1pOINLyvhb\nuVOfnVoi/eoSX9d1g0fatj2dTu6fdj4lapvwGImN5e4q9wEGlM3xX0s8J6mfiEzZW3mXxEGGX+zp\nF4G2bWv/OUh1+DMmSItQY4D5DgSS3RC1PJgYnBG5dHC17N7K7dJnMi6Xy/F4rOv6eDy6pIVdrWqM\naZrmcDi4w/R0OhFkiOKHGiWcNiQnkJDAIWrf5ITADgZSzlVCykTRYFHJiif4IkyA6d4nY7VK1wYb\n48oJlIC3e1KS4omY74W7qse8kqu/yEhZwnozgCCBkYWsi0MpxkR2Ao1Mcoox1ddOquyUT0qQAU0G\nOU9RZ9E4kiCkQL62j8Fy4ol5ApuEJZQEGeon8DLlJzaSXCOWRBJcvKDAkmgjl3hintaUhlbpCz93\noXv5U+5CF4dSjAk4LqrWulg0UHGoX2a3435cUJLJgHx7zaGQnACcawNtCaeA+nINHQgyENtdcyhU\nTgDW6skO9WMw0YZkBBlIY3IdCiEFYPYunihnDNbdu0wRZCC2yXXhg8QGFwukErmKPGYxZjnRhvoO\nZkRJ4acQlAs59xZjhi4OBXxLjk+zd8AhpxgzUO2kHOo7mBEyGWsQTAzsVYy5V3Eo4Ft9fG4pT97x\n1cIR2KR9lZO8EUtJkEG4GlOEyom7ikMBE3ibNTafyB3RRipKpktSrfxWfLMSCZtPMIeCa5Ycljse\nny5qETLfsbty5hdyfHeypiSTgY0kbz7BHAriLzu6mZ/Q+oG4nE/86jsoBEFGQYLmkyPw51CM7KZi\nhSTH5+rNrNQPxnQQuyDIUEtycmILEhs6xD8+lxdP3DVloP4IpIPYQklNRkJCyjISVk6k4ldspG4L\nboh8fCYpnlB/HKrv4INnqRugCpmMnOQ+3xECcyhyyJnvSHIYqE+/q+/gg5f2/7R3MxKCDLm0zneE\nwBxKfJLnO9JSPxir76BVSDdDUxJk5JvHIzmxLxIb+0p1fOYST8xTP0qp76CluGsRKAkyBgeB2JiD\n5EQcJDbWSXJ86ogn5inrzpj6Dlq6Y6lAlAQZMpGcSM5PbPA3HxC4+YR66kcp3R0sJHOzLymrS9q2\n3fgEAd7WJJezviMX/joUsVmuQMbLOiIcn5OLOyKs75BvkGPTJ9MOjm9HNX+Dqky7mUT6IKNt26qq\njsdjVVWTkYT/hKZpYrfvsdlD6m1NcmnXzVy4UU1xqLEkkti9GHNhMMF54VM/SqnvoFVIN7dIH2Qc\nj8fT6dT3/eVyOR6Pk0+4XC72CefzOUKTlnz4Q75yDzWSJCeM6jt3JKR+lFLfQauQbq6QOMiwqQub\nn6jr2oymRew/7bfqur5cLru3If6HP0iQyxxKkuOTeCI+9X9M9R20CunmcrIKPw+HQ9u2NqSw2rY9\nHA5N09hoY3VlRsVKUUwZfP5IfgzEPz4nA6zkf4eSVdqLCtV30Cqkmzelz2QcDofBI4PndF3Xtq3N\ndvif6ma4n42fnJgvF4JYMRMbzHdghvrEu/oOWoV086bEQUZd113XDR4ZP82mN/y5lckr4/gSGeZK\nTRihljuEdgw1mO/AOupHKfUdtArp5jXpCz99g4DD8lMdg7RHcgQcWq0ONSInJwzxRAHUj1LqO2gV\n0s2B9JNGVVVdLhebqDgej7Y9fr2nP7PlnnzzNcP1ywUWff9ZVb2y/+s/Qch9WbGXcbhQXS/xidMS\nX/JTWB9m00sz+XExwpV8MLqpPOrSZzLsytW6ru1aVvugDTjs16fTyX0+O51ONyMMYHeDxEbo+Y7J\n5AT5CTjqPwqr76BVwvkrJXQaLCpZ8QRftEzG4JHB48jI8uTEOLGx8feOHxRyVhYro8+UGTV1nVg5\nwjSZDK8BIla3hSBlCevNAIIEBnY0jiSWJycGE6vLrwvEE9id+mS7+g5aNlGauhVBSAkygHCWhBQr\nuNccvw7xBCJTf3QVEm3ooyTI0BoDYrmZ+Y6g6zv8UGPwIBCf+jFYd+/0SV/4uQtK4UqTZPOJGS6a\n4QhEWuWsk1TfQR2UBBlQaRxJRNt8Asid+mhDfQd1IMiAFNKSE4AO6gdj9R3MGkEG0iA5AUSm/sza\nN9pgQ+ddKCn8hEypijHlY28VmdRXTVrqu3lX7wgmgiLIwG62bD5RAq5l0swcsYMnKFPOclD1HZSP\nIAMrkZxYiNgirS3pNPVHsvpo464Ojm9Ehe2U1GQMbvGQujl6sL4DeQlUPqz+qqK+dlJ9B8VSkslY\nst8ibmK+IwK//IKPTRtFS6ep/8Tv6O6dKemtFEJJJiOaJaOC8JGD5EQqff8ZBZ4riDpiy/lArL6D\nXOXiIMhQjs0nkJdcjlj10Yb6Dnqeua/4GLA7goyVZB6LEj7qAcspOGJzaedqBUQbL1M3QDOCjB1E\nDjhEZY+xC+FTbBsVcsTqHYPfKiDa8D27/RQsQJAhXS7ZY8Aq9ogtZwxW+faNvE1vqH83QyPIEKGQ\nj3pQgyN2RjnRhvoOmoIP470oCTLy2iej2I96BdIxD8IRu476aEN9B30l9DEEJUFG/1jq5jzCRz3k\nhSN2d+r/biVEGyX0MQQlQYYkb8uFuEBDMuY7klA/PpUwEpfQxx1JCTLatk3dhL28LRfiAg05mO8Q\nopzxqYTDqZx3c4v0QUbbtlVVHY/HqqpmQg37NAGxCOuaIB3JCfnKGZ/Ud9BwWs1KH2Qcj8fT6dT3\n/eVyOR6PM0+L1qSZTDLbtmC1cRHolh1WmO/QQX20ob6DvhL6eK/EQYbNTDRNY4yp69pcmTep6/p0\nOu37q++6RnOxRlocpeqpf/tyjDbuXR2WYx9DS5/J8B0Oh3GQ0bZt13U2EFmNazQyQnKiZOrHJ1Ej\ncaBF5qL6mFb6TMbhcBg8MnjO8XgcX1irWf7T7BdcoyEYK5LwTjnjUwmHdznv5jWJg4y6rruuGzwy\n+KdNb9jgw4Ug/Sz34yUcxJBtSaUwK5IwoZzxSUIH+/6zqnoVbve8Ys/u76ZuwCNd1w2CDPugq/o8\nn8/moYYjLXcsyrwdK2KqqspeQcZfUCmM7fxoQ+VYpb6DvhL66EufyTAP+Qm/CNRPXfj5icvlIiHC\n8E1Gvjo2k8Yk6nuQivrjqoTkTQl99KUv/LQrV+u6tmtZ7YNt28Zcs7oQoUOBqMGEQOrHpyQnV99/\nFjMzXUi0kT7IqOu67/umaez/2gftPwfP7Pt+PJmSCrMkmkjYc4IQFssVMj6ZAjpotH9ckVKTISd6\nWMJGGMQZmRpXTjDfgUypr2ZQ30H10mcygKCY70AJ1Oc21HdQKyVBxrV9MlAICfMdgATqj3Oijbwo\nCTKu7ZMBlVjfAdykfgzmHM+CkiADiuWbnKCWEwmV84lffQezRpABEZjvAAJRH22o72DWCDKQAPMd\nQHzqB2P1HcwRQQaCIzmBLPiV47pHKfXnHdGGHFL2yUDuZu7fQUgxwI1v0ro+8Ly70Uzff2afpvug\nVb/5hO7eZYEgA2uwn9VqVIPGdCWeuH3Xuqp6ZZ+mO9QoZ6sr9R0US0mQQU4sKJITkG91PHHLu1DD\n6D3g1Ucbkx1cEvFX1SsyjlsoCTIGZwUxxwrMd0TGlWudJZMdAbz0f7viE0Fx16zH5RpBjxkYoybI\nwL2Y70iF2GK5YMmJLYpIbBi9KQ2n73uqoyIgyCgCyQkIJzKemKE/saF+AuWavv+MwqkdEWTowXwH\n5Es02TFtj+GE4lBgDkHGPsZXq9DlQsx36KOsxExOcsL+VcfxxPII41Y4UsQcCtEGViDIWCptAo3k\nBCSTE09MuuvknYwnlr3Cy4cf15zYMKq7NvJMzmGcKYIMQZjvgHC7T3YInP/emN6wG2y4UMOoPmcL\nSGm8K77R3tNQlAQZMdes7pXQZr6jQOMJEYGjrLV7cmJDhkComca7vbx0JzbKmUDR3buglAQZ8vfJ\nIDkBseJMdmQdT6zGzqHKqO/g7pQEGfI8c1cWQgoISVeIWtmxnZC/6mIUh2qgvoO7kxJktG1b1/WW\nJwjz9qrNUYgkhFdi3iX82pCY9G+wYSnumkW0sVD6W723bVtV1fF4rKqqbdvxE5qmcU9omiZ2+4wx\nIudfIFy0Ua2aYszLqf8WkbaMtqpe3RVPTL7Clh8P46UxL/2by2ulu3eG28rfkj6TcTweT6dT0zRt\n2x6Px0FI2Lbt+Xz238W6rkOnNCbrJ8R8EkKhQkx2bCzGlJQheGuPtSEx6U9slPOJX3fvVkscZNjU\nhc1P2NBhMC3Stu3hcHD/PBwOe82bsF4Ucaz4cBxtsiO3IXlPwhpPcage6jt4l/SZDN84hhjMj3Rd\nt27GhPWiEO+ZMaaqnhljBBZPCBuSJdp3k3Kj94qkPtpQ38G7pM9k+IkK85DbmHymnVixIcjC2S+S\nE8iHuMAiKIFTLcsFnmbSP4diyelaoNuxEm2Y5IWfdV13XTd4ZPJpx+Pxcrm4NEY/y/1gse8rNJFW\niXmXvv8sn2LMpWIVor4rDl3ctCzJ6eDkW7M9Gi65ODT96hLfIOCwbLFn3/dylrDacve7it5Rgoej\nwo4Kz3Z82eVPljYkx1wbItAejde/DiXJGJzkuCrwc2/6TIZ5mCLxi0DbtvX/mWrlKnCNCyYeX/2f\nPezDdseS0dVKzhCU52UJiY1Un/jjnwuK38SB9IWfl8vleDweDoeu606nk33QrVy1oYb/ftj1rila\ninItW+4R+4aNJa8NWSjfyo9rW5BRHBrgd31moscZ5ZRrSOnevht6hnjbblYGjS8HAj8pYt62vSim\ng4zBaDE+KjIdBUXZHkzkGI7ovvtaaHedkhEu5lqjjfSZDEtOvcWOxrfchByaNt6OT9qQfG/Zio4t\nyAq5+5qldQxWT0qQAQRSVa+u1GAST9ym674hb2mcZtI/h1LO/IIySoKM0EU02z8nIQJldxmVIGaG\nQKDcGl/EBhtEG3lREmQMDrVyCneLxWSHQLkNyQnE+gSiP7FhiDYyoSTIiIYai8j2Sk5kml7KtNl7\nybr7Aio/ikhsGNVdU4AgA1LslZzQlLTPuvRhuWuNz7r70So/FvSd4lAkQ5CB2EJXTkgbbHa3PYqS\nNiSXuTbEiRWO6J9DYQJFIIIMBKSgciL3MWny+QzJmdppk3L7UpoTG0QbchBkYB9a4wkyBLu2KKqs\nGx9eEXMoRBvJEWTgPjtOdpQzJA8e9/8pp5RY1Hshk7Qj9i5XGq9/DsVS3DXhlAQZrFkNYcdKTFNq\n0l5ODBGfwHdtucIqP16aYjYpJ6URmZIgg30ythBViakvaa8ea0N0HLGDTcqN0mhDZackUxJkYCH5\nlRM5Xp1vGoxDG9Mb0oZk1oakbsLuCkpsILTvpG6AQhIuOtUVxryc+k8tgbMVy2/w2PefTX7r3tUl\nomxsvISTKzQh79pDYuPlw6WjINwqeUdkMrK3Y3JC4MfE5VgboiNp72Td+CXyqVVSOIei/uiSgyBj\nNxFO+NDxBEPyri26/Rt3JOq9kKnkI5ZNypEKQYZEEe4mGnNDJ4Gybnwc0obkuwgYkncmqRBVVWJD\nyOSUYgQZiVGJqcBDHPYsdUPWYG0IAfQqRSU2nom6JudFSZAhti6pql49jEDBkxO5EDgmLVf4mFRy\nhqBYt961EnYOfRdR6e1jKEqCDKn7ZDwz7z7gFhdMGMYkdUrOECwk8KBdbsO7pmoO5Ro2KV+BJay3\nrbhkPMzzRV0mKnByMeZ6RYHdL1m+A+1CLDCeevilMS/7vle/6pUIY7lsgoy2bVM3QRB9Q/L2xqsf\n1Qon8IiNFkNL67uZbbzdYMOFGrqjDd2920UGQUbbtlVVHY/HqqoihxoPZ8jbgj45p/pdlyd9Q3LW\njY9DzrG6QlFD8oCas9Xt5aU7seFPoKRtiVgZBBnH4/F0OvV9f7lcjsdjoN9ya3/MXN31eatMAsek\n5a41niE5U1k3flIhO4cSbVwjvfDTpi6apjHG1HVtH7FfbDF1HGQcScRUal3b3CskJHwLstCybnwc\nko5YikNLJD3IGDgcDvcGGfI3ohCr5LUhbEFWJoEH7XKZnLClbLChuGt3kR5ktG17OBwGj5gFKalB\nvCz/wiHw6hZzvaK07mfd+Diy7nU+9w25Q24LjKVssOF3PMTsYeEpDek1GfB725AAABeySURBVHVd\nd103eMQY019hn+N/LRBrQza+gjTXGi/tbVpN5RHL2hAZ3pVraK1mKLxcQ3qQMTAIOHz2GB2HGm6F\nyPZTfa8zk7UhqZuA+8QMIrMekvWdrQttftdeUhyqVQZpnKqqLpdLXddt2x6Px8kG38xH7Tt74p9R\nJVxBJJOUtR7e4GBw5XXtHF+RV3dBUvfvlnXjy3RtmumuV1jw427XgFDD08zJOHiCE3omReusSgaZ\nDLtyta5ru5Z18jk3Iww3n/KQ8PjsWpJgCZtrzXF1qMCPicvpS9rfRd+n5KwbH4e0IzbWNJPEDTZC\nHK4qo4qBDIKMuq77vm+axv7vilfw30g/1HDRxvUflHWG30XfkMw0U+omSCftiL0L00xTPy4u1AhE\ncQczCDKs7Xtj+FzpxnyoUfIZvssrpJJjkikyaW/ZXThht/y4QDc3Kd+3OFTgZy3FKQ0RQYY7evxI\nwj3493//94F+6WAOZWFxaMkZAqPxAreEtLfsLiqPWNaGlKeI4lB90gcZdV3bXcP7vu+6zm6D8f77\n7z958sQ++OWXX/77v//77r93PIdio42boQZJ+9RNCKvwt6zkIVnfW7+QwHdt1m6Jjdw6nqX05ayT\nJbVVVf3617/+q7/6K2PM+++/b4z54x//GK099ou+70u4vqSV9fqCUeMTrC5JKOv3rkyx1oZE9szc\nOd1wc2nJ4DlLnr8dq0uCsHkLu1O4XaTqvmUjDGPMkydPorVnMIdizDO3mEqCrONulUn71E1IqfDu\nLyHwiNU4zcQcimgigoymaZqmsYtU27YdT4588803cdozOYdiQ43I14uSh2SV00y4SdoRe5d8huSl\ncptm0r9zaKbS12SYh0xG0zT2/mcuh+HETGaMuXUoMRMbMdeGSMPakJsEjknLsTZky48LJKnxFIeK\nkzjIGCxM9WdMQhR7ruPPoaRKbMyQdIYLJefNsiIndQR2nyEZM/Y4YklsSCEiyHCBxfl8ttttPXny\n5JtvvrHHx5dffvnTn/40WRNHJUWDdSjSruDbZd2jvIZkt2/sTDqKtSGpmyCdwHdtucBHLImN9NJP\nl9hdw+1BcDgcbNjxJ3/yJ19++aWdJXny5Mmf/dmfHQ6H58+f/+53v0vc3Af+Xl75Rhslj0lxkvbu\n1caRRIjhs+QMwUICD9qFmGba8OOEGsmkDzLsruGXy6Xve5fS6Lqu7/uf/vSnfd9/+OGHH3300dOn\nT40xH330kYQ442Gf0Hcy3aQ85pgkrfsk7VM3IazC97ElHJnyNtTYq0lYQuLC3KZp2rZ1AUdVVb/9\n7W9/9KMfGWOeP3/+5s2bmRu+RzCzmnnHPTZErkdfZPta/GxN7JPhEhj2i5nF97n/xfI9Ys3mxpfc\n96wt2Sdj4fO3Y5+MeFxlhjHm+fPnT58+tRGGMebp06dv3rxxX1dV9fTp0//6r/+K1rb548B+a+HO\noQ8/wtoQzdz7O36j+223Ak6FpP2WHxco68ZDPolBxul0cqtO3rx5YydKBv+0OYPf/OY3T58+/cu/\n/MtobVtyT3nzuDh0ftUrZ/hNAsekJfZqtrTuM82UugnSSTti19HRCwmk52cG8yN26qTrup///Oeu\n5U+fPn369Ok//dM/vX79uuu6zz///Nqr/fKXv3Rff/LJJwHb/djDNMrLG8/bQ9bJz+2NT9r9G9uK\nG3U7i2O7kk/Y5H2/9zZVTJesIDGT4fviiy/evHljl5bYyZEf/ehHP//5z//xH/9x/OTPP//8iy++\nsDWYr1+/Hnz3z//8zz/1uIDDraV2czQhuA02dn3NorPW+rqPm/J911QesSXntLCQ9CDDGNP3vZ0i\nsTkM++Bf/MVfuCf84Q9/sP988+bN73//+77vnz9//uGHH75+/frFixcu2vjf//3fr776yq0HsZmM\nuq4Ph4N95Hw++zdP2ctgDuUh1Ngh2mBtyMInl3mBk/aW3YW1IZOvsOXH09JxuunoRWRZ5mdszGEr\nQJ8+ffqHP/yh7/sXL150XWejkNevX3/44YfPnz83xnzxxRe///3vP/jgAz8ZZe+WYoypqupyudgS\nkMHOYKHZORRp93rVsdIhkUfTJfPjxL7TJZlPM22Ve9J+i6wbv8UuHb9zuuTu273eRet0Sa698tc6\n/+Y3v/n444+rqrLBhDHmcDgcDgdbnHE4HIwxXdf5P/KTn/zkX//1X83j93WwdDZCFx6KQ42RF23g\nmutXt2RBxnLbg8isR7WsG1+s7UGkWbUkdXLBebhQQ2uQ8d3UDVip73u7cvXjjz82xtg5ERthGGP8\nWtE3b97YlIYx5quvvvq///u/733ve59++un3v//9733ve4OXjbYDhz+H4h4xGkONrC/rk43Ptzvm\n/jmykrtfJoEn7F3zROGP2JfGu1zv+so6ZVCTcc3HH39sIwxjTNd1LpJ48eKFW/Vqgw+b0nB1GDbC\n+Ld/+7fB7dnMQ9ojgvHRqeCWKCorP1I3IaXCu7+EtCP2LoVXfmxrP/uUL5VxkOH7/PPP3crVL774\n4sWLF+5xF3zY5STn8/l0Ovk/G21+ZCG3Sfn8dl5Zn+EqK+1xU9bvmr4jltLpzbjX620KJ4Fev37t\n5k3crMQvf/nLTz/91N6MzY7iX3311SeffFLXdV3X4yLQJMZzcnvNoQhMgS6XT+MzqMmIg0LUfBtf\njpth35WajKuvtnEORWtNhpJMhs9FGK9fv3bzJp988sn3v//94/FojKmq6ic/+YmdOmnb9nw+13Xt\n3wM2lfk5lCWrXrdnCATKuvFxSPuUvD1rXUiGoFgC37Xlrh+xL708NN7SGTpd4xIYg8fbtk0bXszw\no+OYO4dqFfJTZvBMBmtD8m38Fll3XOwC430zGYNX9pcNLvwpMhnZa9v2cDhM7iYuM8LwbyhvH9l9\nO6+blH7g2PQKCRW+BVnWjV9CZa1SgVuQ2awGiQ2roCCjrmtpNZ4zBuGFz21aum+ooXJIXv5khuQC\nCTxiCxySHX0BNHMoprTpEk1cbi3+BhvsCnqF8sJPkvY7tiemrBsfWtx4ZW4jL63TJbluxlU4/3B8\nXK5hIlRscMHS7dqYtHFPpLSEbegUVdaND83+cWIdse828jLF7OVV0HSJJtfWoRhj7ByKwFzojLxa\nO5B14ycxzZS6CdJlfcwLmGZ6WdReXgQZAQ1uHx/6nvKujOOuVa+RCTjDdxZzTCq8+5kS+K4tV/IJ\nGzqAdtdq3aEGQUYogxUrEe4p76c3BsWhck71mGe4nF7vRf2InvVbxtqQ3X88rZinm+I4gyAjCJur\n8O+E0nWdS2AcDodAyYwxr2LjRqgh7STPOmm/5Y8p7Y0IRF8QydqQhc+UdrZG9Mz/z9+k4NpaQgUo\n/Nyf3UW07/txMsN9EfmG8u5r+8XkUpSsT/KsGz8QbushUX+lmPeDldZ3QyGqWnaJ2fQ8tZ0c0RpM\nXEMmY3/H4/FyufiPjEOKaPeUn5xDWZLYKFmEv0y46+y1xvMpOVNZNz6OpEfss8f/GWOe9Veka2RK\nBBk7a5rGzpK0bWsjick9y6PdU36SP4eyvThU4Ji0nJyk/V6vk/U003ZZNz6Okk/YbX1/Nv7v3kji\n4TNeQZgu2V/XdfZObMYYW+NpMxly7pAySNktvyVK4VnryedvT/snJKoxMkl7y+5S+Am7tu9XJzvM\ngi2zis1YXFPc/FBM/n3kRd1TftK+d18r8mbf73b8nPnAlPWmn/MyfMve4eZz+TZ+g7l44prtdRVF\nVWaQyYikbduqquwcSvJ7yk/ydtewNkUbMcv6EN/2t0zaqEYhauomhDYRT6zb4Xt7fFBOhGHIZEQm\nZ8ZkwL+hvP8It5W/R8BMhsBhaTnuG5K6FQkk7fiNeKKoREJy/K0xd8rFvCXKXtJd3URMl2Q9qmXd\n+DKlnmaajifmw4hUQcZ//ud/Dh758Y9/HL8ZkTFdUrqbiUH7BJmJDclJe/9llywrXVH3rm+aKevG\nxyEtDos1zbSmeOJ6MxJEGD/72c/++Z//2X/k/ffft0GG+yz3t3/7t//yL/8Sv21BkcnAnCvrUIy0\naOOmKLenf5TJuBZA+JmMwXNEDR46ZP1XLXWaaVHxxM1shPA5kaqq/uM//uPHP/7xkydPjDHffPON\nffDrr7/+67/+69St2xOZjOwFrfMYnKWDzUMndw59eKasC5yoxsgk7S27y/YFxgK7r31X0BvJCeFR\nwhY/+9nPXBrj22+//frrr+3j77333i9+8QtlQYbad7EETdOcz2f79el0cvdDcfkG/8F9+XMoM6GG\nYi454fVdRE3GEkUuMH4n68bn6eqOf0ErJ8SGKYO7Pbiv/+7v/u7bb7/90z/9U2PMixcvfvjDHyZr\n4n7IZGTM3iHFGNO27fF4dBtyHA4Hu/1XVVV2f459f687K7ydQ63M5lAWyvNj4hyWa6ZugnQb3rX7\nVorOtkHnStEf/OAH//AP/2C//tWvfjX47rfffvvixQtjzAcffPD69WsFcYbQQA83tW3bNI27K4rb\n4Mvf6cv+b8ybsRljNoYaAsekxbLJZASS83u3Sb4d31arxErRNcaFboNMhq3POJ1OXddFu3qHQyYj\nV+5Wrm7bcv8ur4PnROBNnSxNbEheG4IV1L8X1463fPM6ixtzNZ6YiSTKvOnoPFuN4f5pr8+/+tWv\nxnUYdtvGmG0LhCAje/Y+KafTyaS73at/KRndWf5qqBH5viHITrZDsjG5TjPtuVJ0yw9u5z7tuOlj\n/8Fw9Woz2rb9n//5nx/84Ae2GafT6Xw+v/fee99+++2rV6/atv3FL37x9ddf//d///cHH3xgIiah\ngyLIyJ77PDFZfhEnFp68lDyu2Ii3SXmZpI3Hd2FtSIoAep+VojLTFXVduzDC3s/BXh5D16v5bKmc\n/dpNYf/xj3/86KOP+r63ZfvuIvnee+/Z/7UpjdevX3ddJ/APu4KGPpTJzpK4YNzdgM2vybBFGwnD\n4RVzKHGEGZMi1WSwNiTfxicyF09s33BC4Fg42aTd69Xc9gH+Qj/3K9yvG8QTk3/5yRkTGxW5V87U\nd1I3AOv5B1/XdfbI9nOD5/M5fkrQsaeQW4fy8PWzmfVsIUyO9/fmvfdrzg6/cXvj752oEoUIY9az\nqf/enYDemfjW488AE24GEDdfITJXrGY/evmRxLhwbZ2qqpqmsYmKtm3P5/Plcun7/nQ62QebpnE3\nwrRfz1+K/+Zv/sYYczqdZN7cagumS3Jlg9yqqg6Hg39nVzm3e10wh2IiJDa2p9zvHdW2D8w7jqPi\nk/bp5Zkaua94oqjbitqoomkam8o9Ho+Xy2X8tI31am3b2l43TeOCA5u0GCdI/FjH3z5x8PX5fK6q\n6nQ62au6jtUlZDIyZo/ypmn6vvePxckHpfETG0I+LgtPb4SW4UB7nyV3kFn3CoFNJCfGaYlBfmJA\nVBAQhx2/bRZhclvkjfVq1z6/uV83GcT4mebJr201xgcffNB1nY53jUxG9iaPdbE5t8E95fPdzkv9\nkLydtAxBDmtD1qwUNUmrLycnI9Kq69qfSr6WRdjCD1AmdwpweWX7xfl8tgsAB8/x0xj2ix/+8IcK\nNuDyiSvYgWJLKshMxvuUvy38XFhRMVP4KW14npf6Zt+J7R5PXCOwvnLwed2vebSPJFkpah7XeLqv\nXXX84Akr2Bex/+tmZGy0MfjaPt9PWpSGTAYimb9E+hmO7O6+Fpm07sfMEAh0q/FLiydE1U4u1HXd\neKiOvFJ00uVy8Qf4EPVqLmiwy2Xdr3P1GXVd2zlrIQmeVMSFxijQtfVmD1/msk95oZkMPNi0zTYr\nRXc3OcDvMuoP7uqw4yvrQ+Enlgp3pbi2DuWuVa99/5m+5Zq4SVQxphktFl3+itmtFLWqB/60yF4r\nRTcKV682U4eBAYIM3Gb3+Doejzb56R6fvL7syL7441DjarRRVa82xhPqkwdZR1Hp1obcXtyxMJ5Q\ntlLUsvtDXC4Xu3Qz1Z0NIJa4/BsEGlRR2WIuPxG6sYrq2i+dPDh32ac8jN2mS7ZjV9D7G7+oeELg\nnIUQft2D+xMl33QYyVH4iRsGt3h1JV225ss9OJ6h3OjapfzxqleBocZSVfUqXGoh5s3nBIYjK4ox\n3fFGGLHctSoEqhPgMF2CG2yNtPun27/cJJp5vWsOZXdBZxySTGdon2babbLDSh5/DGYnQ09ZzvCX\naBpjuq6zbZBzZwNIQCYDS9lryrWkRfx7ypt7biu/XwO2DqgCP/cvJ7vlS28rOv8qCTe2uknUYlF3\nZwP7T7d0U86dDSABQQYWsbvuDFam+RLeU968K7x3w0zG0yhFCVE8IXZzzI1cnsA9EnrK8ib/VmT+\n4+wPAYcgA7fZ27CNr8tCriODrcqNiooNZdbefG46ObExjFi4WFRUIGLvntX3/TiZ4b5IVV+Z150N\nEBlBBm5wH1YGj/u3HbJ3Oo7dsgfjwWDhzqGKSZuUWdCYO7bZ3h5G3CQqwjDGjG8lymJRZIEgAze4\nGV/3iA0v5M+8Pl6HYq4lNvYdj/cq3lzYqjzXhtyOJ24mEqQFAUHZW4kaY+zpZpMWqaYsgbsQZOCG\npmmu1YcLn3kdTKNcm0PZfuuNwavFXCQi+74hc8UTWisnAum6zi3l8Le9knwCAobNuKDSuEpj8C1j\nzM2Kjfs/4i/ajMvovH3J0tuA+cSGEZJHbv9WojveVhQIhH0yoI23i8YEd4OJmxtsZDXGx7TzzhOi\n+DvoC9mOYoatBq3r2pZmE2FAIKGfJIAQrq9DMXssRXlmzMslcyWZZDJuJyc23jhUYCbDNcnuCmO/\nDr2D/kaS8y4ANRkoyLV1KEbeqte4EcbVSsyNccDN4k1RcUbbtq520gUWbocY+3iS7SjmEWFAMoIM\n4K3+3a2014caKwo/t8QTqwpHxi+ycphXtlLUbTXhyiond9AXFWEAwhFkQBw77T2YEbdf2BvA7vvr\n/DmUhateb73gxGzIqq2oHrl/bcgO22yLCgKises4TqeTYTsKYBuCDAjStm3TNF3X2eu7FfoGDeHm\nUPad8rj+apu22caYizUnDza2owCWY3UJZBlf093dHc3DjHiclngZjtj3er1uYmWHMcaYl5neVlTU\n1IONcd0//buJimonkBGCDAhiF/2PPynGv6e8vw7WG7ZjhhqT8cTLcTxhbu3M4dWaCOIvFvXf1rSL\nRc/ns/va7q1puHc5sAHTJRAt1Yz45Of7xxUbV+dQdi/GVLk5pr3fjR3FbUjRNI2Qe5cfDgd/s3z5\nO+gDYhFkQDRpM+LeTdeuFoeuKJ4o7baig7UbLrBIvliUe5cD+yLIQAaEXN/9cfpWceh9K0W3hxE3\nyYkwjDF1Xfvt8Ut9JSwW5d7lwF4IMiCd5HvKm+EciosthjcxuVkVISoIiMZurHktacFiUSB3BBmQ\nLpcZ8flshLQJCwncZpr2PZU2NQZgO4IMiDP+RCt5Rnzmjq8DRBg+W185/puIfaMBrMASVuRB5sAz\nuOOrzMWixhi7dsN/JO1KUVdfOXicxaKAMgQZwEpZTH/YxIC//YN5WKtpw6Pz+Ry/vtItUnXcYlHu\nXQ5oQpABrHStDlRaMkPOJqpO0zSDLcVcoNP3vf0um2wCChBkAI9sH9tEpTfkbKK6nMAmAViHIAN4\nyy5jsRtdK/4YzUpRANEQZABvHY/H0+nU9/3lcrE3+1aJlaIAoiHIAIx5+HxvqxNcEeL2FxRLePMA\n6ECQAUzw11LeS/60CytFAcRBkAEYY0zbtoNZg9XxgfxpF1aKAogjg4X+QAT2JhrudLA3GV/xEX/w\nOlVVuW2zpWFvTQChkckAJuy14GLLtEtoRBgAQiPIAIx5XOzpF4Hea8dpFwDIHUEG8JYtoajr2hZV\nrHsRe2fRwSM7NA4AMsRdWIG36rre/XavXdcRZAAoFoWfwM5cseegCBQASkMmA9iZnXY5HA5d162e\ndgEABchkAEGwQBQACDIAAEAQrC4BAABBEGQAAIAgCDIAAEAQBBkAACAIggwAABAEQQYAAAiCIAMA\nAARBkAEAAIIgyAAAAEEQZAAAgCAIMgAAQBAEGQAAIAiCDAAAEARBBgAACIIgAwAABEGQAQAAgiDI\nAAAAQRBkAACAIAgyAABAEP8PJAI3MXEmWxsAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "TCanvas *example3Dplot = new TCanvas(\"example3Dplot\",\"example 3D plot\",10,10,720,420);\n", - "data->Draw(\"room1:room3\",\"room2>-1\",\"SURF\");\n", - "example3Dplot->Draw();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAswAAAGICAIAAADakiGqAAAABmJLR0QAAAAAAAD5Q7t/AAAgAElE\nQVR4nO3dT6j/zn7X8eR6+/uh1Ptru1AQpNuCYru4u5bOhBahCl3YhXTRlehWrC66KZlwN27aC24L\nrgRddaFQBK2ZqaUrC9ZSsCgUiyC0lNv7q8r94zUuxjOkyefzOp/kZD7zmeT5WHzJ+XxyTua8vjkn\n7zMzmbTTNDUAAABH+0LpBgAAgHOiyAAAAFlQZAAAgCwoMgAAQBYUGQAAIAuKDOB5rLXe+9KtUJxz\n1lprrXNO7+m9b9u2bduntOt9j7f8cd57a60+3M3/0JvvvlpiwDNMAJ5iHMemacZxLN2Qu9KvBWNM\n3BCtjfs8sXXKppY/7ub3GP8f58fq+37Tu/NXgHN7ld8RwImN49j3/YEXvxziRXHePP13iDHGGPOE\nhr0rZvt4yx/8mqlKWLy1qDwW++h34ysvkhvwBAyX4BKcc7HjetGdrvvY773rvY9fLe6Q3o296+su\n9K7rhmF4t23Pb+d8/xBCPG56JV68HxzfmR/r8ZbfbMnWlqfE9rV8zTk3DEMMZC2EkErGpmli50Q6\nVgghVSfrd4HLKV3lAM/QvF14mtnfkfrHQbybriLxr/m03dzpJI9uDpfEF+dNmn/BZ7bTGLNo87qH\nYG7RkzE/Snp9frldt1y8O2/kvKk7Wv6RrqP1cMnN/8T0Let3b34InBtFBi5hcdmeVqMDi4v9I++m\nC1sqX+aHW19I7s3J6Ps+vbhu5+JKv2iJfndfO+fvNvf/DllfO2+2PB39ZsvvvftIy3Xb0ruLimST\ndZFxs/BKLdfv3vwQODeKDFzC+pq0/l0/v6LodxfXnvVsvpuXwEcmfj65nfcmb6bZi6K1737L61fi\nNfiRd9cN+0jL551Ymzo27hUZi93S96Lf1S0HTok5GbiKdef84u7ETR+uzXdYH+tx77YzTkdIw/z6\n3bVHvpGu65qmGcfx3s7x9Xe/1HzuQto/tU2/u8O9ljvnprf6o+u6tm3Xkzw+eO/r4//j8SgH3mcL\nvDKKDFzReqpgM7vI3bzOffwSuIM+3OGNiQs5xImN0zSJGiJOb1zs8JHS6oMeaXmckDuOozFmGIb1\nehWP57n1/2WejLU2NuDBYwFV+2LpBgAFpIphfjW6WXk8+G4mNw/3SDt38N53XWeMeeQrjOPYdZ1Y\nq+qRxhxVJMWWN00z3ZoGu9453jYS+1HWtwJp1tqb9UHq2nm3enDOhRDSsA5wciXHaoBnaVZzF9bn\n//yV9bvvznWYD/bfHHd/cE7Gu+1czMk4qp1bfyE0qzkZ+Vq+PpzeeS12YMSDPj4J9OZXbuTM3MW7\nNzNn4ieug+ESXFS8NqSh8biRZgmkP3PTu4vVEY4S+/nFCL1uyeHttCv39ny3zyNeX++17ea7+wZc\n0gofN1vunGvbNs3VmKbpg/Mh+r4PIcTv3Xsfuy7S4RbvxuPOY7y3/AZwTqWrHOAZmlv3DS4uxjfX\nWrj57oE9GTfXydDtXOwg3n28naL3ftM6GZlaPt3vyXi35ev/2cfd6yNZFEOLiPS7N4MCzqqdHhjF\nBE7sBadi3PRq7Xx8Juyrtfwo+76vtm0fnPgCnABFBoA9itxucwJt2/Z9zy2suAjmZADYw1obQuBi\nuQlx4WroyQCwU6wz+B3yoE03CQPnQJEBAACyYLgEAABkQZEBAACyoMgAAABZUGQAAIAsKDIAAEAW\nFBkAACALigwAAJAFRQYAAMiCIgMAAGRBkQEAALKgyAAAAFlUU2S0b+IDphcv8mxDAABeTR1FhrW2\n7/tpmqZpCiHEZxhaa40x8cVhGHiwIQAAOzjnMv2tXsdTWNv2Rjvbth3HMXZsxH+pMwAAeJz33jkX\nQuj7PkedUUFPRiwdvPfWWmvtvJJIQyfzMRQAAPCgrBfQL+b70keJVUXszPHed103juN6txBC2m7b\n9mnNAwDg42KH/be+9dmmz/r00893H6tpmvVf78c6vsgQF/iPDM2keRje+9i9s9jBGHPUsQAAeKbd\nfxt/85tf2vop++qSfY4fLolX9zRPc27fF1z05MxrLiZhAADwsrLMyej7/sCvtpjUOQxD7MYwxqxf\nrA4jOxr5CISjkY9AOBr5HCXLnIzDr/fjOHZdF7eNMansaNvWex9CSC9Wh2EdjXwEwtHIRyAcjXyO\nUsHEz6ZprLXTNMUbTOav33wRAAC8glzrZNycm/m0KRQ319V4TRU1tQjyEQhHIx+BcLTn55OOuPXu\nkh0+/fTzp313uXoyuq6rdwjjmfg518hHIByNfATC0cjnKLmKtbJlMkU6AKAiZ+3JyLXi5/zWDwjM\nYdbIRyAcjXwEwtHI5ygZ52Sk+0GSp5VO+vygkwMA8FLO2pORd05GwbUrqCQAACiLORmFVdTUIshH\nIByNfATC0bi75CjMySiMn3ONfATC0chHIByNfI6ScTGugnMyAABAcbmKjEqfJPJ8dFpq5CMQjkY+\nAuEsLAYpPv3083tPN/3kk69nbUn7R5ufqrrd857Cmv08K7LsNz8/AIDHPT4TIlORkS5b3/4ffznH\n15/75C/99+rnZDRNY61t27brurZt45PM8h0LAAC8mlxFRuy9mN70fb+eooGGJV/eQz4C4WjkIxCO\n9umnn4fwI1/5ys+Vbkj1chUZIYR510WcokFnxhrDOhr5CISjkY9AONo3v/klY369dCvOIONwCSUF\nAABXlmuCpHNuGIa+7+O4yZN7MipaVpw5qhr5CISjkY9AOAvF7y4568TPjOeZc857H0Jomqbv+2fe\n1MrPDwDgcdxdksk5L8YUGQCAipy1yMg4J8M51755/lIZtWCOt0Y+AuFo5CMQjkY+R8l4C+swDOM4\nTtM0jmPD/9kd9Lho5CMQjkY+AuFo5HOU5z2FtW3bcRyf06XBcAkAoCJlh0vyrc2dcbgEj6CDRyMf\ngXA08hEIR7tOPt77tDb3zTtA5zMfdtwimvFR79ba1KB4awkzM9bocdHIRyAcjXwEwtGuk0/XdX3f\nx4kN64W5vffDMMSVu2/u8K5cRUYsL+YPLokzMwAAwCuIV+p5L8Cir8I51/d93L65w7vyrviZnl1S\n5FmsVbhOp9w+5CMQjkY+AuFo18zHGLOoIeYjEtHWIuOLH23UHc+c5nmvAffeeql+sJdqzAsiH4Fw\nNPIRCEcrmM8X/vDRZcGiL/7g7+w+lvfeGLN4Zf5hvFHUOWet3beiZq4iIy7xWfDxJfwIAQBO7//8\n1l/Z+impLok1xPytRdeAtXYcx3g1t9aGELb2HWSckxFCaP+0TMeqGrFo5CMQjkY+AuFo18wnPgZk\nIY6YeO9fqyfjmU8qqRo9Lhr5CISjkY9AONpF8klzOdPci/nTTOOLXdfFNPbdJZqryGCaJwAALy7e\nmGqMCSGkG0nSnavWWmNM6tfZcZfoOVfGrGjFz4qaWgT5CISjkY9AONrz80lH/M5/+qu5j/XFH/yd\nTSt+po6NHcc653nGzw8AoCJli4x8WFYcAABkQZFR2DXnMD+OfATC0chHIByNfI5CkVEYwzoa+QiE\no5GPQDga+RyFIgMAAGSR6xbW4mpZVpw5qhr5CISjkY9AOBr5HOW0RUYt50ct7SyFfATC0chHIByN\nfI7CcAkAAMiCIqMw5jBr5CMQjkY+AuFo5HMUiozC6JTTyEcgHI18BMLRyOco1czJmD81ngejAABO\n6Rv/87PSTThSHUVGfIx9+nAcx1hnpB6tvu8rfe4rc5g18hEIRyMfgXA08jlKHTm2bZsKiyQ9o3a9\nA+cHAKAi6bL1v37jh3Mf67t/+Deedoms42J8s2iYFxbzguPe/gAAvKazFhnVTPxs38yHRVLXRb2z\nNJjDrJGPQDga+QiEo5HPUaopMsZxnKZpHMdhGLz383mg0XzSRjMrSjZJn/u0jXmD2SCfTRvTNL1C\nM152g3zERvxDtngzXnbj+fmcVX3DCmlkpJ2NiTjn5pVHy3AJAKAeLcMlBa37LfTrFTl9GftB5CMQ\njkY+AuFo5HOUCm5h9d53XZfKrhDCOI5N0xhjvPexY2MYhvhidehx0chHIByNfATC0cjnKBUUGdZa\nY0yqK/u+n4+YeO9DCMaYeud+AgBwStUMl8RZn9M0ze8uiR9O01TvuAmdchr5CISjkY9AONrV8nn3\nGrr7IltHkRHd7KuovQODTjmNfATC0chHIBztOvnEMYGu6+LIwHoH51zaYcfK2jUVGQAA4EBd1/V9\nH8cKuq5bvOu9H4Zhmqa0hMTWr0+RUdjVOuW2Ih+BcDTyEQhHu0g+sesi9k8sFs5e2zduQJFR2HU6\n5fYhH4FwNPIRCEe7Zj7xns35K+nBHc65eBPG1q9Zwd0l+4g69JpnDwDg9f3Rt75n0/7f3/3K7mN5\n7xd1w7ono+/7OEoSQuj7fushTltk1FJJsDipRj4C4WjkIxCOVlE+/238G1s/JdUl1trFNIvFmIhz\nLs7JiB+2bWut3TRuwnBJYbWcx6WQj0A4GvkIhKNdM5/FI8CapvHez3sv1uMp76LIAADgiuaTPeeT\nQNOzwBZdHSGErdM/KTIKu8gc5t3IRyAcjXwEwtGuk0+8c9VaG+9ljS/Gp3k0TeOciytuR2nF7cdV\nM+y0SUXDaQAApMvW7/u/mftY39/9yuISmR4Eds+7O9xzzosxRQYAoCJli4x8GC4p7DqdcvuQj0A4\nGvkIhKORz1EoMgqjx0UjH4FwNPIRCEcjn6NQZAAAgCwoMgqjU04jH4FwNPIRCEcjn6OcdsXPWpYV\nf6nGvCDyEQhHIx+BcDTyOcppiwxOEQAAymK4pDA65TTyEQhHIx+BcDTyOQpFRmH0uGjkIxCORj4C\n4WjkcxSKDAAAkMVp52TUgsVJNfIRCEcjH4FwtIL5fO3bnxU5bib0ZBTGz7lGPgLhaOQjEI5GPkeh\nyAAAAFlQZBTGHGaNfATC0chHIByNfI5CkVEYnXIa+QiEo5GPQDga+RzltBM/a1nxEwCAszptkVFL\nJcEcb418BMLRyEcgHI18jsJwSWGcxxr5CISjkY9AOBr5HIUiAwAAZEGRURhzmDXyEQhHIx+BcDTy\nOQpFRmF0ymnkIxCORj4C4Wjkc5TTTvwEAACP8N5ba++9Nf/w3m73UGQUxhxmjXwEwtHIRyAc7Tr5\neO+7rovb4zguagjn3DAM81eMMYuyQ2O4pLCLnMe7kY9AOBr5CISjXSefruv6vp+maRzHVG0kzrlp\npll1bLyLIgMAgCuKFYNzrnkbBxE1hHOu7/uth2C4pLDrdMrtQz4C4WjkIxCOds184lDIvVkXwzDs\nyOS0RUYty4q/VGNeEPkIhKORj0A4WsF8fv8L371p/5/88V/afSzvvTFm8crNPa214zjuOMRpiwx+\nhAAAp/cv/+3f3fopqS6x1i7mdd7sxvDehxC23lcSMSejMJZ80chHIByNfATC0a6ZTwjh5uve+x2z\nMSKKjMLocdHIRyAcjXwEwtEuks98sud8Eqj3fj5uMgzDvm6MhiIDAIDLineuWmvjvazxxfniGbHa\n2F1knHMCbUUTgytqahHkIxCORj4C4WjPzycd8V/96t/Lfayf/PFfWnx34qaSD6qsJ6Nt29iZkz6M\n5i/WhZ9zjXwEwtHIRyAc7Wr5ZKowmrqKjEUK1lpjTFyGbBiGrcuQAQCArKopMmJfxfyO3hBC6sAw\nxlTamXHNOcyPIx+BcDTyEQhHI5+j1FFkeO9v9lWkvo18XT25Xa1TbivyEQhHIx+BcDTyOUodRUbX\ndYu1xtYFx+IG33aX9LlssMEGG2yw8bSNs6qgyHDOxVGSuOhYc2ce7GJt1GmX9LlP25g3mA3y2bTR\nzibAs0E+mzbita14M1524/n5nFUdy4qHENI9u3HcJC0eUu9ASXT6M+yDyEcgHI18BMLRyOcodfRk\nTG+MMX3fxwojPi8u7jMMQ6UTPwEAOKs6ejJu8t63bRvHUIwxlXZptCyJI5GPQDga+QiEo5HPUSor\nMhbzPadpqn3EhPNYIx+BcDTyEQhHK5jP1ke9v7gKhku0qisMAABOrPoio3anv3/pg8hHIByNfATC\n0cjnKBQZhdFpqZGPQDga+QiEo5HPUSgyAABAFhQZhdEpp5GPQDga+QiEo5HPUSq7u+Rx4hR5qX6w\nl2rMCyIfgXA08hEIRyOfo5y2yOAUAQCgLIZLCqNTTiMfgXA08hEIRyOfo1BkFEaPi0Y+AuFo5CMQ\njkY+R6HIAAAAWVBkFEannEY+AuFo5CMQjna1fBaP7Nixwz0UGYXRKaeRj0A4GvkIhKNdJ5/4qNGu\n6+IDR/UOO552TpEBAMBFdV3X9/00TeM4dl13c4dxHOMOwzBs/foUGYVdrVNuK/IRCEcjH4FwtIvk\nE7suYv9EfNroojMjfhjfstaO47j1EBQZhV2nU24f8hEIRyMfgXC0a+ZjjFkXGcYY55x9s/VrnnYx\nrlpW/AQAIPm96bNN+//Cj7ndx4o1xOKVxT4hhKZpnHPOubZtt15AT1tk1FJJ7Pg/uxTyEQhHIx+B\ncLSK8vmHv+q2fkqqS6y1i2kWN/sqYuURZ4DGauPxYzFcUlgt53Ep5CMQjkY+AuFo18wndloszLs6\nFt0ej6imWNukoiIUAIB02fpH/27zHRxb/cKPuXSJbNt2HEdrrfe+67r4+ny+5/x6mnZ+/Fj0ZBR2\nkTnMu5GPQDga+QiEo10nn3jnqrU23ssaX4wFR9zu+7590/f91rmf5/yLn54MAEBFSvVkRN57XT28\nu8M99GQAAHBp7xYQ+yqMhiKjuOt0yu1DPgLhaOQjEI5GPkehyCiMYR2NfATC0chHIByNfI5CkQEA\nALKgyCiMTjmNfATC0chHIByNfI5y2hU/a1lW/KUa84LIRyAcjXwEwtHI5yinLTI4RQAAKIvhksLo\nlNPIRyAcjXwEwtHI5ygUGYXR46KRj0A4GvkIhKORz1EoMgAAQBannZNRC1ZA18hHIByNfATC0Qrm\n83vf+d4ix82EnozC+DnXyEcgHI18BMLRyOcoFBkAACALiozCmMOskY9AOBr5CISjkc9RKDIKo1NO\nIx+BcDTyEQhHI5+jnHbiZy0rfgIAcFanLTJqqSSY462Rj0A4GvkIhKORz1EYLimM81gjH4FwNPIR\nCEcjn6NQZAAAgCwoMgpjDrNGPgLhaOQjEI5GPkehyCiMTjmNfATC0chHIByNfI5S08RP7721tnQr\nAAA4FXF59d7PP9x6Fa6jJ8M517Zt13Vt2zrn0uvtm/mLdaFTTiMfgXA08hEIR7tOPt77dHld1BNR\n96dt/fp13KWT7iby3nddF7djPRVDadt2HMdUYXH3EQCgIumy9VP/5p/kPtYv//W/ny6Rbdv2fe+c\nm19ebzZsnwp6Mrz3xpi4PS8sQgipA8MYU29nBgAAzxcvpvHqOb+8HqiCIsNaG79t7/08i5sb1blO\np9w+5CMQjkY+AuFo18zHGLMoMtJYQbSjBKlp4mccDer7vrlVbYUQ5h/uO0Vip1DqHXrCxrzBzz/6\n62+Qj9iYpukVmvGyG+TDRkUbyX/5zvc1W/z2T/zMpv3n5gMF6ZXFPnGgIP61f3M8RVt+e6+vfZt+\nMf+/ieNJKZ31fxsAAC8rXbb+2r/+Z7mP9ds/8TPxWIu6wVprrRVzD9q3CRyPH6uC4ZI0ShLN+3MO\nHz16vvaSnXKPIx+BcDTyEQhHu2Y+iwGBZnWRXXR7PKKCIqNpmmEY0nYIIc7AmFcbwzBUOvGTHheN\nfATC0chHIBztIvnMJ3vOJ4GmkYF4g2vaP11/H1dBkWGtNca0bRuHSIwxKZdhGBYvAgCAB43j2HWd\ntbbrujjlsXkbRmmaxjkXr79R3/dbL7U1zV24uSTZzRcrmpNRUVOLIB+BcDTyEQhHe34+ReZkJO8u\nqL17xe1znmf8/AAAKlK2yMinguESAABQI4qMwq45h/lx5CMQjkY+AuFo5HMUiozCGNbRyEcgHI18\nBMLRyOcoNa34uYmoQzl7AAB4gtMWGbVUEsxR1chHIByNfATC0cjnKAyXFMZ5rJGPQDga+QiEo5HP\nUSgyAABAFhQZhTGHWSMfgXA08hEIRyOfo5x2TkYt6JTTyEcgHI18BMLRCubzx9/4nlKHzoGeDAAA\nkAVFRmF0ymnkIxCORj4C4WjkcxSKjMLotNTIRyAcjXwEwtHI5ygUGQAAIIvTTvysZcVPlnzRyEcg\nHI18BMLRyOcopy0yajk/amlnKeQjEI5GPgLhaORzFIZLAABAFhQZhTGHWSMfgXA08hEIRyOfo1Bk\nFEannEY+AuFo5CMQjkY+R6HIAAAAWVBkFEannEY+AuFo5CMQjna1fLz3mb4yRUZhdMpp5CMQjkY+\nAuFo18nHe9+2bdd1bduKUiPutqMWocgAAOCiuq7r+36apnEcu64Tu+37+hQZhV2tU24r8hEIRyMf\ngXC0i+QTeyacc03TWGubO+Mm1tq+7/cdgiKjsOt0yu1DPgLhaOQjEI52zXyMMesiw3sfQoiFyA6n\nXfGzlmXFAQBI/vgbn23a/09++kd3H8t7b4xZvLLYp+u6j1w0T1tk1FJJsEK+Rj4C4WjkIxCOVlE+\nf/6f/9rWT0l1ibV2GIb5W3HQZP7hvHvDe7/Y4V2nLTJqUct5XAr5CISjkY9AONo18wkhrGuIEEKa\n9Rkrkk1DJ9UUa5tUVIQCAJAuW1/6F/8+97H+5Kd/NF0i27Ydx9Fa671PIyOx62JRcKQ9Nx2LiZ+F\nXWQO827kIxCORj4C4WjXySfeuWqtjfeyxhdjwXHI1z/nX/z0ZAAAKlKqJyPaMdniQfRkAABwaZkq\njIYio7jrdMrtQz4C4WjkIxCORj5HocgojGEdjXwEwtHIRyAcjXyOQpEBAACyOO06GbWs+MkcVY18\nBMLRyEcgHI18jnLaIqOW86OWdpZCPgLhaOQjEI5GPkdhuAQAAGRBkVEYc5g18hEIRyMfgXA08jkK\nRUZhdMpp5CMQjkY+AuFo5HMUigwAAJBFTRM/8617WhBzmDXyEQhHIx+BcLSC+Xz7f/+5IsfNpI6e\nDOdc27Zd17VtO68z2jebnjz7Uvg518hHIByNfATC0cjnKHUUGcMwjOM4TdM0TSGEWFJYa40x8cVh\nGOKjaQEAwIuooMds/pD75u05Lt77+bPt04txn4p6AitqahHkIxCORj4C4WjPzycd8c/+09/Mfaxv\n/J0vP+27q6Anw1o7jyOEkEZM1hvV4edcIx+BcDTyEQhHI5+jVFBkJLH3whjjnFsPjoQQ5h+2u6TP\nZYMNNthgg42nbZxVNXeXWGtDCIvxkTljzPzDj9Sh6XOfsFHkoBVtJC/SnpfaaGc9umyQz6aNGE7x\nZrzsxvPzOas6ejJirTdN06K2OMFkz9OfYR9EPgLhaOQjEI5GPkepoMiIlcS6njDGpBeHYaj3LlYA\nAE6pmiKjnUn3kgzDYK1t29YYU+ncz9MPyH0Q+QiEo5GPQDga+Ryl+ruYbi4D2nJ3FgCgHm3RW1jf\nXVB794rbFfRkaJV2YAAAUFy8bTMuqH1zmmMcLog77JiWUH2RUTs65TTyEQhHIx+BcLTr5NN1Xd/3\n0zSN49h13eJd730IId5oM47jMAxbvz5FRmEM62jkIxCORj4C4WgXySd2XaQndTSreyy8933fx+2L\nDpcAAICPm9+zGTnnYgkS52Qs1qN6RDWLcW0lOrteqkRljqpGPgLhaOQjEI5WMJ9Pvr7tuvz5z/7Q\n7mN57xd1w81pGfEJYk3TjOO49RCnLTJq+fmppZ2lkI9AOBr5CISjVZTPl37xP279lFSXWGsX0yxu\njomkJ4i1s+eSPojhEgAAsHwEWNM06yeFbV1omyKjsOvMYd6HfATC0chHIBztIvnMJ3vOJ4F671Mx\nsbhtdev0z9MOl9Siok65IshHIByNfATC0a6TT7xz1RgTQkg3ksQFtadpcs7Fhbbj633fby0yzjn3\nhzlNAICKpMvWZ1/9rdzH+vxnf2jTip+xV2PfLaznvBhXVGRU1NQiyEcgHI18BMLRnp9P2SIjH+Zk\nFMbPuUY+AuFo5CMQjkY+R6HIAAAAWVBkFHaROcy7kY9AOBr5CISjkc9RKDIKo1NOIx+BcDTyEQhH\nI5+jnPYW1lqWFQcA4KxOW2TUUkkwx1sjH4FwNPIRCEcjn6MwXFIY57FGPgLhaOQjEI5GPkehyAAA\nAFlQZBTGHGaNfATC0chHIByNfI5y2jkZtaBTTiMfgXA08hEIRyuYz3d9/l2lDp0DPRkAACALiozC\n6JTTyEcgHI18BMLRyOcoFBmF0WmpkY9AOBr5CISjkc9RKDIAAEAWp534WcuKnyz5opGPQDga+QiE\no5HPUU5bZNRyftTSzlLIRyAcjXwEwtHI5ygMlwAAgCwoMgpjDrNGPgLhaOQjEI5GPkehyCiMTjmN\nfATC0chHIByNfI5CkQEAALKgyCiMTjmNfATC0chHIBztavl47z+4wz0UGYXRKaeRj0A4GvkIhKNd\nJx/vfdu2Xde1bXuzknDOpR2cc1u/PkUGAAAX1XVd3/fTNI3j2HXd4l3v/TAM05thGLZ2aVBkFHa1\nTrmtyEcgHI18BMLRLpJPrBhi/4S1tlkNi3jvjTHpQ2MMRUZlrtMptw/5CISjkY9AONo181nXEM65\n+SshhFiLPO60K37Wsqw4AADJ//36n9m0/9e++gO7j7XoqGjuT/D03seBFYqM/6+WSoIV8jXyEQhH\nIx+BcLSK8vnef/Cft35KqkustcMwzN+6WUNYa0MI4zhurTAahkuKq+U8LoV8BMLRyEcgHO2a+YQQ\n1i+2bWutnaZpR4XRUGQAAHBN88me80mg3vv5hzvuXE0oMgq7yBzm3chHIByNfATC0a6TT7xz1Vob\np1zEF+MMjOat8mhnthYc1Qw7bVLRcBoAAOmy9X0/+7u5j/W1r/7A4hLpvd83GvKumnoynHOLGmp3\nbQUAAKJMFUZTS5ERi6z1JFhjzO5lyF7EdTrl9iEfgXA08hEIRyOfo9RRZJ5J69UAAAjDSURBVDS3\n6qwQQurAMMZU2pnBsI5GPgLhaOQjEI5GPkepo8iw1jrnFmuGNLPKI19XDwAA2KeOImNtPTiyuMG3\n3SV9LhtsvP4GJy357N5IEb1Ie15t4/n5nFWtK36uuy4W/Rwf6exKn8sGG6+8MT/JX6E9r7ZBPmxU\ntHFWtfZkRJVO9gQA4AoqLjLmz4sbhqHSiZ+n7yv7IPIRCEcjH4FwNPI5Sq3DJU3TeO/btvXehxCM\nMZXO/Tx9X9kHkY9AOBr5CISjkc9Raioy1oMj0zTlW6cMAIAnmz7f9qj3F1fxcElUe4VBp5xGPgLh\naOQjEI5GPkepvsioHZ1yGvkIhKORj0A4GvkchSIDAABkQZFRGJ1yGvkIhKORj0A4GvkcpaaJn5uI\nU+Sl+sFeqjEviHwEwtHIRyAcjXyOctoig1MEAICyGC4pjE45jXwEwtHIRyAcjXyOQpFRGD0uGvkI\nhKORj0A4GvkchSIDAABkQZFRGJ1yGvkIhKORj0A4GvkchSKjMDrlNPIRCEcjH4FwtKvlk++R5hQZ\nAABcVHzUaNd18YGj93az1u4rRCgyCqNTTiMfgXA08hEIR7tOPl3X9X0/TdM4jl3XrXdwzllrQwj7\nvj5FRmFX65TbinwEwtHIRyAc7SL5xM4J51zz9rTRm90VH3kQKUUGAABojDHrIsM5F6uQfU674mct\ny4q3bftS7Xk15CMQjpYjn29967PHd/7kk68fe/QDcfJoBfP55GvbTps/+OUv7z6W994Ys3hl91e7\n6bRFRi0/P7W0sxTyEQhHIx+BcLSK8vkLf+s/bP2UVJdYa4dhmL/1kZGRmxguAQAAze7ZnQJFRmHX\nmcO8D/kIhKM9LZ8QfuQrX/m55xzrKJw82kXymU/2nE8C9d4fNW5CkVFYRZ1yRZCPQDja0/Ix5tef\nc6ADcfJo18kn3rlqrY33ssYXvfc3b2fd4bRzMgAAgGatnabJez+fjbG+o2R31XXOCcYVTZyuqKlF\nkI9AOBp3lwicPNrz80lH/Is/9Zu5j/UHv/zlp313DJcUxs+5Rj4C4WjkIxCORj5HYbgEAB5VvHOi\neFdK8QagLvRkFHaROcy7kY9AOBr5CISjkc9RTtuTUcuKny/VmBdEPgLhaOQjEI5GPkc5bU/GdF/p\npgHAkYov1FG8AXhZpy0yakGnnEY+AuFo18lnx0Idx4ZT40oh2nVOntwoMgqjZ0UjH4FwNPIRCEcj\nn6Oc81ZpbgEHcErFb+4o3oCzYp0MZEGnnEY+AuFo5CMQjkY+Rznt3SU5PF7CP16/0+OikY9AONop\n8zmqb2B3OBfpnCh48nzPH/7X3If4g9wHmKEnAwAAZEGRURidchr5CISjkY9AOBr5HIUi40M+fnf4\nKXt0D0Q+AuFo5CMQjkY+R6HI+JDz3R0OAMBRTjvxs5ZlxbnbViMfgXA08hEIRyOfo5y2yHja+fHz\nP/+Pn3MgAADqctoiI4eL3LsFAMAhmJMBAACyoMgAAABZVF9keO9LNwEAgIrlu5JWXGR479u27bqu\nbdujAtq9AMvzV275yBGf/21WlE9Fn7gbJ0+mI1b0ibsVaeoV8iklx5V0ruIio+u6vu+naRrHseu6\n0s0BAKAyua+ktRYZseByzjVNY61tGDcBAGCLJ1xJay0yFowxFBkAAOyW40pa6zoZ3ntjzOKV+YcV\nDY5eZIyTTzzHJxY5KJ948U8sctBSE0F+99f+9tMO9+6V9ONqLTKstcMwLF5J2ywHCwC4go9c7/SV\n9BAnGS4JIZRuAgAAFctxJa34GTBt247jaK313nddV+83Mu+eOryKrJr3nkBu4pzBITiR5q75Cyf7\nlXSq1jiOTdPE8aR4B06NFuNh4ziWbtFLiP+5ZHIT54zQ9/3it0EKqt7fEkdZhNP3/fxEunI+8yiM\nMen1K4ST+0pacZER1f4blovETel0jz8ApZvzWjhnbhrHcf2L0hiTrhlXzu1eOCe+dm4yPzdSSpc6\nefJ9d9XPyThB79YJvoVjsQjKuzhnblrHEkKIJ1LTNMaYtH1BnDP3xF8vKZ90G+elTp58p0f1RcYJ\ntG/OfRLvxiIoa5wza9Za59xiLKmZ/fa88lX2ZjghhGEY4ol08XCm2chICGF9zlw5nw+iyCgv9lON\n4zgMA1fT5im3bteOc+YR62S4DW0hDZfM/2q/rPgUj9hpwclzlFrXyajRzVo4VdDW2nsn99U84dbt\nqnHOPGh92qz7Oa5s+tMTG4dhuHKdYa0NIcT7LBpOnuPQk/E8/o7S7Xp1/AGxwDmzCXHdw/2rSVw0\nc5qmRQ6cPB9HkVFSvC85fUiPZTSf7DmfBIqGc2aj+YSei/+lvtZ1XQrHObe4o/U65r9q5jh5DsFw\nSUmxuzutPN/3/cX/nkjiQ4eNMSGEy/7uu4lzZpM4yu69DyEYY8hqru/7VLCe/u4JIVYS8yeAxPKC\nk+cQFa/4eSbXXGnuXcQiEM7jyEogHI18PogiAwAAZMGcDAAAkAVFBgAAyIIiAwCAAq5wiyxFBgAA\nT2Wtbdu267p4A0vp5mTELawAADyPcy6EEO+6iCvfnPgODHoyAABYijevOufSEhqx+2HxYMK4w/wh\nc/ET087xw7Qdd0jL/5z+QdP0ZAAAcEN8psE4js1bNRC7HGLZ4Zxzzg3DEJ94EqXHxKcXu65L2/FJ\nQ/OSYvGg+fOhJwMAgNvSYlzzJfzjA5Cbtz6J1Bsxf9BSfDF+yr2HrjnnYgmS9VsoiyIDAID3pSoh\nbYQQ9j1TLa1Zvn4q28lQZAAAsIGoJB6pGOJkz3EcTzwVI6HIAADgfWm4xDlnjGmapu/7+YuPf53r\nPHGNiZ8AALwjPho6TsVo3maAOufinSNpn0e+VJy6MX/ua5wZemyDXwQPSAMA4CE3bwY5/R0iH0GR\nAQAAsmBOBgAAyIIiAwAAZEGRAQAAsqDIAAAAWVBkAACALCgyAABAFhQZAAAgC4oMAACQBUUGAADI\ngiIDAABkQZEBAACy+H8iGbTF1+G26QAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "TCanvas *example2Dplot = new TCanvas(\"example2Dplot\",\"example 2D plot\",10,10,720,420);\n", - "data->Draw(\"room1:room2\",\"room2>-100\",\"textcolz\");\n", - "example2Dplot->SetGrid();\n", - "example2Dplot->Draw();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "

this is my title

\n", - "

...write more documentation

" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Error in : Bad numerical expression : \"a10q6\"\r\n", - "Info in : Variable compilation failed: {A10itemcod,a10q6==1}\r\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAF0CAIAAAC/mplpAAAABmJLR0QAAAAAAAD5Q7t/AAAE1klE\nQVR4nO3UMQEAIAzAMMC/5+GAlx6Jgl7dM7MAqs7vAIAXkwLSTApIMykgzaSANJMC0kwKSDMpIM2k\ngDSTAtJMCkgzKSDNpIA0kwLSTApIMykgzaSANJMC0kwKSDMpIM2kgDSTAtJMCkgzKSDNpIA0kwLS\nTApIMykgzaSANJMC0kwKSDMpIM2kgDSTAtJMCkgzKSDNpIA0kwLSTApIMykgzaSANJMC0kwKSDMp\nIM2kgDSTAtJMCkgzKSDNpIA0kwLSTApIMykgzaSANJMC0kwKSDMpIM2kgDSTAtJMCkgzKSDNpIA0\nkwLSTApIMykgzaSANJMC0kwKSDMpIM2kgDSTAtJMCkgzKSDNpIA0kwLSTApIMykgzaSANJMC0kwK\nSDMpIM2kgDSTAtJMCkgzKSDNpIA0kwLSTApIMykgzaSANJMC0kwKSDMpIM2kgDSTAtJMCkgzKSDN\npIA0kwLSTApIMykgzaSANJMC0kwKSDMpIM2kgDSTAtJMCkgzKSDNpIA0kwLSTApIMykgzaSANJMC\n0kwKSDMpIM2kgDSTAtJMCkgzKSDNpIA0kwLSTApIMykgzaSANJMC0kwKSDMpIM2kgDSTAtJMCkgz\nKSDNpIA0kwLSTApIMykgzaSANJMC0kwKSDMpIM2kgDSTAtJMCkgzKSDNpIA0kwLSTApIMykgzaSA\nNJMC0kwKSDMpIM2kgDSTAtJMCkgzKSDNpIA0kwLSTApIMykgzaSANJMC0kwKSDMpIM2kgDSTAtJM\nCkgzKSDNpIA0kwLSTApIMykgzaSANJMC0kwKSDMpIM2kgDSTAtJMCkgzKSDNpIA0kwLSTApIMykg\nzaSANJMC0kwKSDMpIM2kgDSTAtJMCkgzKSDNpIA0kwLSTApIMykgzaSANJMC0kwKSDMpIM2kgDST\nAtJMCkgzKSDNpIA0kwLSTApIMykgzaSANJMC0kwKSDMpIM2kgDSTAtJMCkgzKSDNpIA0kwLSTApI\nMykgzaSANJMC0kwKSDMpIM2kgDSTAtJMCkgzKSDNpIA0kwLSTApIMykgzaSANJMC0kwKSDMpIM2k\ngDSTAtJMCkgzKSDNpIA0kwLSTApIMykgzaSANJMC0kwKSDMpIM2kgDSTAtJMCkgzKSDNpIA0kwLS\nTApIMykgzaSANJMC0kwKSDMpIM2kgDSTAtJMCkgzKSDNpIA0kwLSTApIMykgzaSANJMC0kwKSDMp\nIM2kgDSTAtJMCkgzKSDNpIA0kwLSTApIMykgzaSANJMC0kwKSDMpIM2kgDSTAtJMCkgzKSDNpIA0\nkwLSTApIMykgzaSANJMC0kwKSDMpIM2kgDSTAtJMCkgzKSDNpIA0kwLSTApIMykgzaSANJMC0kwK\nSDMpIM2kgDSTAtJMCkgzKSDNpIA0kwLSTApIMykgzaSANJMC0kwKSDMpIM2kgDSTAtJMCkgzKSDN\npIA0kwLSTApIMykgzaSANJMC0kwKSDMpIM2kgDSTAtJMCkgzKSDNpIA0kwLSTApIMykgzaSANJMC\n0kwKSDMpIM2kgDSTAtJMCkgzKSDNpIA0kwLSTApIMykgzaSANJMC0kwKSDMpIM2kgDSTAtJMCkgz\nKSDNpIA0kwLSTApIMykgzaSANJMC0kwKSDMpIM2kgDSTAtJMCki7MWwF5fPJCtAAAAAASUVORK5C\nYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "TCanvas *example1Dplot = new TCanvas(\"example1Dplot\",\"example 1D plot\",10,10,400,400);\n", - "data->Draw(\"room1\");\n", - "example1Dplot->SetGrid();\n", - "example1Dplot->Draw();" - ] - } - ], - "metadata": { - "kernel_info": { - "name": "root" - }, - "kernelspec": { - "display_name": "ROOT Prompt", - "language": "c++", - "name": "root" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.9" - }, - "nteract": { - "version": "0.3.4" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -}