-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.cpp
774 lines (642 loc) · 24.6 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
#include <iostream>
#include <set>
#include <thread>
#include <vector>
#include <ctime>
#include <cmath>
#include <cassert>
#include <fstream>
#include <sstream>
#include <ctime>
#include <string>
#include <cstdlib>
#include <random>
#include <algorithm>
using namespace std;
int threads = 0;
int threadThresh = 0;
int convThreshold = 0;
// typedef for matrix object
struct Matrix {
int dimension;
vector<vector<int>> matrix;
};
// initialize matrix to dimension x dimension, fill with zeros
void initMatrix(Matrix* M, int dimension){
M->dimension = dimension;
M->matrix.resize(dimension);
for (int i = 0; i < dimension; i++){
M->matrix[i].resize(dimension);
}
}
// print matrix by rows to standard output
void printMatrix(Matrix& A){
for (int i = 0; i < A.dimension; i ++){
for (int j = 0; j < A.dimension; j++){
cout << A.matrix[i][j] << " ";
}
cout << endl;
}
cout << endl;
}
// returns true if A.dimension == B.dimension and A.matrix == B.matrix
bool isEqual(Matrix* A, Matrix* B){
if (A->dimension != B->dimension) {
return false;
}
else
{
for (int i = 0; i < A->dimension; ++i) {
for (int j = 0; j < A->dimension; ++j) {
if (A->matrix[i][j] != B->matrix[i][j]){
return false;
}
}
}
return true;
}
}
// find the optimal number of zero rows to pad given the number of rows in the matrix.
// Instad of padding to the next power of 2, pad to the least z = m * 2^k
// such that m < threshold; k is an integer
int findOptDim(int n, int convThreshold){
int counter = 0;
while (n > convThreshold){
if (n%2 == 0)
n /= 2;
else
n = (n+1)/2;
counter ++;
}
return n*pow(2,counter);
}
/*
* Helper functions to pad and unpad matrices
*/
void initPadding(Matrix* M, int newdim){
M->dimension = newdim;
M->matrix.resize(newdim);
for (int i = 0; i < newdim; i++){
M->matrix[i].resize(newdim);
}
}
void removePadding(Matrix* M, int newdim){
M->dimension = newdim;
M->matrix.resize(newdim);
for (int i = 0; i < newdim; i++){
M->matrix[i].resize(newdim);
}
}
// add two matrices given an offset for A, B, and C for quasi-in-place Strassen
void add(Matrix* A, Matrix* B, Matrix* C, int topA, int leftA, int topB, int leftB, int topC, int leftC, int dimension){
for (int i = 0; i < dimension; i++)
for (int j = 0; j < dimension; j++)
C->matrix[topC + i][leftC + j] = A->matrix[topA + i][leftA + j] + B->matrix[topB + i][leftB + j];
}
// subtract two matrices given an offset for A, B, and C for quasi-in-place Strassen
void subtract(Matrix* A, Matrix* B, Matrix* C, int topA, int leftA, int topB, int leftB, int topC, int leftC, int dimension){
for (int i = 0; i < dimension; i++)
for (int j = 0; j < dimension; j++)
C->matrix[topC + i][leftC + j] = A->matrix[topA + i][leftA + j] - B->matrix[topB + i][leftB + j];
}
// multiply two matrices given an offset for A, B, and C using the conventional algorithm with
// cache efficiency optimization
void convMult(Matrix* A, Matrix* B, Matrix* C, int topA, int leftA, int topB, int leftB, int topC, int leftC, int dimension) {
for (int i = 0; i < dimension; ++i)
for (int k = 0; k < dimension; ++k)
for (int j = 0; j < dimension; ++j)
if (k == 0)
C->matrix[topC + i][leftC + j] = A->matrix[topA + i][leftA + k] * B->matrix[topB + k][leftB + j];
else
C->matrix[topC + i][leftC + j] += A->matrix[topA + i][leftA + k] * B->matrix[topB + k][leftB + j];
}
void multiply(Matrix*, Matrix*, Matrix*, int , int , int , int , int , int , int); // forward declare for mutual recursion
// implement Strassen's algorithm in place, using scheduling inspired by Li, Ranka, and Sahni (2011)
void strassenMult(Matrix* A, Matrix* B, Matrix* C, int topA, int leftA, int topB, int leftB, int topC, int leftC, int dimension) {
// C12 = A21 - A11
subtract(A, A, C, topA + dimension/2, leftA, topA, leftA, topC, leftC + dimension/2, dimension/2);
// C21 = B11 + B12
add(B,B,C,topB,leftB,topB,leftB + dimension/2,topC + dimension/2,leftC,dimension/2);
// C22 = C12 * C21
multiply(C,C,C,topC,leftC + dimension/2,topC + dimension/2,leftC,topC + dimension/2,leftC + dimension/2,dimension/2);
//C12 = A12 - A22
subtract(A,A,C,topA,leftA + dimension/2,topA + dimension/2,leftA + dimension/2,topC,leftC + dimension/2,dimension/2);
//C21 = B21 + B22
add(B, B, C, topB + dimension/2,leftB,topB + dimension/2,leftB + dimension/2,topC + dimension/2,leftC,dimension/2);
//C11 = C12 * C21
multiply(C,C,C,topC,leftC + dimension/2,topC + dimension/2,leftC,topC,leftC,dimension/2);
//C12 = A11 + A22
add(A, A, C, topA, leftA, topA + dimension/2, leftA + dimension/2, topC, leftC + dimension/2, dimension/2);
//C21 = B11 + B22
add(B,B,C,topB,leftB,topB + dimension/2,leftB + dimension/2,topC + dimension/2,leftC,dimension/2);
Matrix* T1 = new Matrix();
initMatrix(T1, dimension/2); // TODO deal with non-power of 2 case
//T1 = C12*C21
multiply(C,C,T1,topC,leftC + dimension/2,topC + dimension/2,leftC,0,0,dimension/2);
//C11 = T1 + C11
add(T1,C,C,0,0,topC,leftC,topC,leftC,dimension/2);
//C22 = T1 + C22
add(T1,C,C,0,0,topC + dimension/2,leftC + dimension/2,topC + dimension/2,leftC + dimension/2,dimension/2);
Matrix* T2 = new Matrix();
initMatrix(T2, dimension/2); // TODO deal with non-power of 2 case
//T2 = A21 + A22
add(A,A,T2,topA + dimension/2,leftA,topA + dimension/2,leftA + dimension/2,0,0,dimension/2);
//C21 = T2 * B11
multiply(T2,B,C,0,0,topB,leftB,topC + dimension/2,leftC,dimension/2);
//C22 = C22 - C21
subtract(C,C,C,topC + dimension/2,leftC + dimension/2,topC + dimension/2,leftC,topC + dimension/2,leftC + dimension/2,dimension/2);
//T1 = B21 - B11
subtract(B,B,T1,topB + dimension/2,leftB,topB,leftB,0,0,dimension/2);
//T2 = A22 * T1
multiply(A,T1,T2,topA + dimension/2,leftA + dimension/2,0,0,0,0,dimension/2);
//C21 = C21 + T2
add(C,T2,C,topC + dimension/2,leftC,0,0,topC + dimension/2,leftC,dimension/2);
//C11 = C11 + T2
add(C,T2,C,topC,leftC,0,0,topC,leftC,dimension/2);
//T1 = B12 - B22
subtract(B,B,T1,topB,leftB + dimension/2,topB + dimension/2,leftB + dimension/2,0,0,dimension/2);
//C12 = A11 * T1
multiply(A,T1,C,topA,leftA,0,0,topC,leftC + dimension/2,dimension/2);
//C22 = C22 + C12
add(C,C,C,topC + dimension/2,leftC + dimension/2,topC,leftC + dimension/2,topC + dimension/2,leftC + dimension/2,dimension/2);
//T2 = A11 + A12
add(A,A,T2,topA,leftA,topA,leftA + dimension/2,0,0,dimension/2);
//T1 = T2 * B22
multiply(T2,B,T1,0,0,topB + dimension/2,leftB + dimension/2,0,0,dimension/2);
//C12 = C12 + T1
add(C,T1,C,topC,leftC + dimension/2,0,0,topC,leftC + dimension/2,dimension/2);
//C11 = C11 - T1
subtract(C,T1,C,topC,leftC,0,0,topC,leftC,dimension/2);
delete(T1);
delete(T2);
}
// multithreaded version of Strassen's algorithm
void strassenMultThread(Matrix* A, Matrix* B, Matrix* C, int topA, int leftA, int topB, int leftB, int topC, int leftC, int dimension) {
{
// 1. C12 = A21 - A11
thread t1(subtract, A, A, C, topA + dimension/2, leftA, topA, leftA, topC, leftC + dimension/2, dimension/2);
// 2. C21 = B11 + B12
add(B,B,C,topB,leftB,topB,leftB + dimension/2,topC + dimension/2,leftC,dimension/2);
t1.join();
//threads++;
}
// 3. C22 = C12 * C21
multiply(C,C,C,topC,leftC + dimension/2,topC + dimension/2,leftC,topC + dimension/2,leftC + dimension/2,dimension/2);
{
// 4. C12 = A12 - A22
thread t2(subtract, A,A,C,topA,leftA + dimension/2,topA + dimension/2,leftA + dimension/2,topC,leftC + dimension/2,dimension/2);
// 5. C21 = B21 + B22
add(B, B, C, topB + dimension/2,leftB,topB + dimension/2,leftB + dimension/2,topC + dimension/2,leftC,dimension/2);
t2.join();
//threads++;
}
//6. C11 = C12 * C21
multiply(C,C,C,topC,leftC + dimension/2,topC + dimension/2,leftC,topC,leftC,dimension/2);
Matrix* T2 = new Matrix();
initMatrix(T2, dimension/2); // TODO deal with non-power of 2 case
{
// 7. C12 = A11 + A22
thread t3(add,A, A, C, topA, leftA, topA + dimension/2, leftA + dimension/2, topC, leftC + dimension/2, dimension/2);
//8. C21 = B11 + B22
thread t4(add,B,B,C,topB,leftB,topB + dimension/2,leftB + dimension/2,topC + dimension/2,leftC,dimension/2);
//12. T2 = A21 + A22
add(A,A,T2,topA + dimension/2,leftA,topA + dimension/2,leftA + dimension/2,0,0,dimension/2);
t3.join();
t4.join();
//threads++;
//threads++;
}
Matrix* T1 = new Matrix();
initMatrix(T1, dimension/2); // TODO deal with non-power of 2 case
//9. T1 = C12*C21
multiply(C,C,T1,topC,leftC + dimension/2,topC + dimension/2,leftC,0,0,dimension/2);
{
//10. C11 = T1 + C11
thread t5(add,T1,C,C,0,0,topC,leftC,topC,leftC,dimension/2);
//11. C22 = T1 + C22
thread t6(add,T1,C,C,0,0,topC + dimension/2,leftC + dimension/2,topC + dimension/2,leftC + dimension/2,dimension/2);
//13. C21 = T2 * B11
multiply(T2,B,C,0,0,topB,leftB,topC + dimension/2,leftC,dimension/2);
t5.join();
t6.join();
//threads++;
//threads++;
}
{
//14. C22 = C22 - C21
thread t7(subtract,C,C,C,topC + dimension/2,leftC + dimension/2,topC + dimension/2,leftC,topC + dimension/2,leftC + dimension/2,dimension/2);
//15. T1 = B21 - B11
subtract(B,B,T1,topB + dimension/2,leftB,topB,leftB,0,0,dimension/2);
t7.join();
//threads++;
}
//16. T2 = A22 * T1
multiply(A,T1,T2,topA + dimension/2,leftA + dimension/2,0,0,0,0,dimension/2);
{
//17. C21 = C21 + T2
thread t8(add,C,T2,C,topC + dimension/2,leftC,0,0,topC + dimension/2,leftC,dimension/2);
//18. C11 = C11 + T2
thread t9(add,C,T2,C,topC,leftC,0,0,topC,leftC,dimension/2);
//19. T1 = B12 - B22
subtract(B,B,T1,topB,leftB + dimension/2,topB + dimension/2,leftB + dimension/2,0,0,dimension/2);
t8.join();
t9.join();
}
//threads++;
//threads++;
//20. C12 = A11 * T1
multiply(A,T1,C,topA,leftA,0,0,topC,leftC + dimension/2,dimension/2);
{
//21. C22 = C22 + C12
thread t10(add,C,C,C,topC + dimension/2,leftC + dimension/2,topC,leftC + dimension/2,topC + dimension/2,leftC + dimension/2,dimension/2);
//22. T2 = A11 + A12
add(A,A,T2,topA,leftA,topA,leftA + dimension/2,0,0,dimension/2);
t10.join();
//threads++;
}
//23. T1 = T2 * B22
multiply(T2,B,T1,0,0,topB + dimension/2,leftB + dimension/2,0,0,dimension/2);
{
//24. C12 = C12 + T1
thread t11(add,C,T1,C,topC,leftC + dimension/2,0,0,topC,leftC + dimension/2,dimension/2);
//25. C11 = C11 - T1
subtract(C,T1,C,topC,leftC,0,0,topC,leftC,dimension/2);
t11.join();
}
//threads++;
delete(T1);
delete(T2);
}
// MASTER multiplication mathod- decides between concurrent Strassen, sequential Strassen, and conventional multiplication
// given threading and switchover thresholds
void multiply(Matrix* A, Matrix* B, Matrix* C, int topA, int leftA, int topB, int leftB, int topC, int leftC, int dimension){
if (dimension > convThreshold) {
if (dimension > threadThresh)
strassenMultThread(A, B, C, topA, leftA, topB, leftB, topC, leftC, dimension);
else
strassenMult(A, B, C, topA, leftA, topB, leftB, topC, leftC, dimension);
}
else
convMult(A, B, C, topA, leftA, topB, leftB, topC, leftC, dimension);
}
// final multiplication wrapper, implementing padding- returns null if A and B are not of the same dimension
Matrix* multiply(Matrix* A, Matrix* B){
if (A->dimension != B->dimension)
return NULL;
int dimension = A->dimension;
Matrix* C = new Matrix();
initMatrix(C, A->dimension);
int padding = findOptDim(dimension, convThreshold);
initPadding(A, padding);
initPadding(B, padding);
initPadding(C, padding);
multiply(A,B,C,0,0,0,0,0,0,padding);
removePadding(A, dimension);
removePadding(B, dimension);
removePadding(C, dimension);
return C;
}
// populates M with random ints in [low,high]
void populateRandomMatrix(Matrix* M, int low, int high){
random_device r;
mt19937 mtgen(r());
uniform_int_distribution<> dist(low,high);
for (int i = 0; i < M->dimension; i++)
for (int j = 0; j < M->dimension; j++)
M->matrix[i][j] = dist(mtgen);
}
// method for finding and testing optimal n0, place at which to convert to conventional algorithm
void findOptimalconvThreshold() {
for (convThreshold = 8; convThreshold <= 256; convThreshold*=2){
//for (convThreshold = 2; convThreshold <= 64; convThreshold++){
double total = 0;
//cout << "multiplying matrices, n = " << i << endl;
for (int j = 0; j < 5; j ++){
Matrix* m1 = new Matrix();
Matrix* m2 = new Matrix();
initMatrix(m1, 256);
initMatrix(m2, 256);
//cout << "populating m1" << endl;
populateRandomMatrix(m1, 0, 1);
//cout << "populating m2" << endl;
populateRandomMatrix(m2, 0, 1);
clock_t start;
start = clock();
Matrix* m3 = multiply(m1, m2);
total += (std::clock() - start) / (double)(CLOCKS_PER_SEC);
delete(m1);
delete(m2);
delete(m3);
}
cout << convThreshold << "\t" << total / 5 << endl;
//cout << "finished multiplying.\n" << endl;
}
}
// gets time to multiply a random nxn (1-0) matrix
double timeRandMult(int dimension){
Matrix* m1 = new Matrix();
Matrix* m2 = new Matrix();
initMatrix(m1, dimension);
initMatrix(m2, dimension);
populateRandomMatrix(m1, 0, 1);
populateRandomMatrix(m2, 0, 1);
clock_t start;
start = clock();
Matrix* m3 = multiply(m1, m2);
delete(m1);
delete(m2);
delete(m3);
return (std::clock() - start) / (double)(CLOCKS_PER_SEC);
}
// find optimal threshold to switch over from multithreading to sequential operation
void findOptimalThreadThresh() {
convThreshold = 32;
threadThresh = 64;
while (threadThresh != 4096){
//cout << threadThresh << endl;;
double total = 0;
//cout << "multiplying matrices, n = " << i << endl;
for (int j = 0; j < 1; j ++){
total += timeRandMult(2048);
}
cout << threadThresh << "\t" << total / 1 << endl;
//cout << "finished multiplying.\n" << endl;
threadThresh *= 2;
}
}
/*
* unit tests for methods
*/
void testRandMatrix(){
Matrix* m = new Matrix();
initMatrix(m,10);
populateRandomMatrix(m, 0,1);
printMatrix(*m);
free(m);
}
void testInitMatrix(){
Matrix* m = new Matrix();
initMatrix(m,3);
printMatrix(*m);
free(m);
}
void testConvMult(){
Matrix* A = new Matrix();
initMatrix(A,3);
Matrix* B = new Matrix();
initMatrix(B,3);
Matrix* C = new Matrix();
initMatrix(C,3);
Matrix* D = new Matrix();
initMatrix(D,3);
A->matrix = {{1, 2, -3}, {1, 3, 0}, {2, -1, 1}};
B->matrix = {{2, 1, 0}, {-2, -1, 1}, {2, 1, -3}};
C->matrix = {{-8, -4, 11}, {-4, -2, 3}, {8, 4, -4}};
convMult(A,B,D,0,0,0,0,0,0,3);
assert(isEqual(D, C));
free(A);
free(B);
free(C);
cout << "all conventional tests pass" << endl;
}
void testStrasMult(){
convThreshold = 2;
//First test
Matrix* A = new Matrix();
initMatrix(A,2);
Matrix* B = new Matrix();
initMatrix(B,2);
Matrix* C = new Matrix();
initMatrix(C,2);
Matrix* D = new Matrix();
initMatrix(D,2);
A->matrix = {{1,2},{3,1}};
B->matrix = {{2,1},{3,1}};
C->matrix = {{8,3},{9,4}};
multiply(A, B, D, 0, 0, 0, 0, 0, 0, 2);
assert(isEqual(D, C));
free(A);
free(B);
free(C);
//second test powers of 2
Matrix* E = new Matrix();
initMatrix(E,8);
Matrix* F = new Matrix();
initMatrix(F,8);
Matrix* G = new Matrix();
initMatrix(G,8);
Matrix* H = new Matrix();
initMatrix(H,8);
E->matrix = {{9, 3, 5, 7, 5, 7, 13, 18}, {1, 9, 0, 4, 17, 2, 5, 8}, {4, 8, 6, 7,5, 12, 3, 2},
{11, 2, 4, 11, 19, 13, 3, 4}, {17, 17, 16, 1, 1, 6, 3,1}, {15, 11, 5, 20, 17, 3, 7, 16},
{10, 7, 2, 6, 18, 15, 17,15}, {17, 4, 16, 19, 2, 15, 11, 0}};
F->matrix = {{3, 9, 0, 1, 11, 12, 19, 11}, {5, 10, 8, 14, 12, 10, 14, 12}, {13,
11, 12, 4, 4, 13, 5, 7}, {8, 0, 18, 8, 0, 2, 8, 16}, {6, 0, 7, 18,
2, 5, 20, 6}, {17, 17, 0, 17, 5, 4, 9, 1}, {12, 8, 3, 9, 10, 3, 6,
3}, {15, 3, 18, 12, 7, 14, 17, 16}};
G->matrix = {{738, 443, 608, 669, 456, 561, 841, 646}, {396, 197, 422, 640, 269,
330, 701, 430}, {486, 416, 342, 541, 278, 330, 534, 377}, {614, 420,
476, 781, 322, 438, 928, 549}, {511, 628, 380, 486, 524, 636, 758,
556}, {802, 455, 936, 961, 548, 737, 1305, 1034}, {931, 618, 635,
1076, 588, 639, 1198, 718}, {830, 712, 613, 679, 488, 593, 852,
711}};
multiply(E,F,H,0,0,0,0,0,0,8);
assert(isEqual(H,G));
free(E);
free(F);
free(G);
free(H);
Matrix* I = new Matrix();
initMatrix(I,4);
Matrix* J = new Matrix();
initMatrix(J,4);
Matrix* K = new Matrix();
initMatrix(K,4);
Matrix* L = new Matrix();
initMatrix(L,4);
I->matrix = {{16, 9, 0, 5}, {19, 6, 9, 4}, {12, 11, 16, 12}, {20, 6, 16, 2}};
J->matrix = {{7, 12, 11, 13}, {8, 5, 13, 20}, {18, 13, 7, 4}, {6, 1, 19, 11}};
K->matrix = {{214, 242, 388, 443}, {367, 379, 426, 447}, {532, 419, 615,
572}, {488, 480, 448, 466}};
multiply(I,J,L,0,0,0,0,0,0,4);
assert(isEqual(K, L));
free(I);
free(J);
free(K);
free(L);
//third test non powers of 2, positive and negative
Matrix* M = new Matrix();
initMatrix(M,14);
Matrix* N = new Matrix();
initMatrix(N,14);
Matrix* O = new Matrix();
initMatrix(O,14);
M->matrix = {{-12, -2, -18, 12, 6, -13, -15, 12, -17, -18,
5, -19, -13, -7}, {14, -11, 20, 9, 2, -4, 11, -5, 12, 11, 1, 15, 0,
11}, {7, 18, 6, 12, 13, -14, 4, 9, 3, 13, -1, -12, 11,
18}, {17, -12, 19, 1, -16, 10, 20, -15, 1,
13, -15, -12, -13, -4}, {-4, -12, -9, 7, 14, 4, 6, 15, 4, 11,
19, -8, 11, -20}, {0, -3, 9, -4, 0, 19, -9, 15, 20, 0, -3, 8, -13,
17}, {2, 19, 15, -2, 16, -7, -11, 17, 8, -20, 17, -13, 9, 3}, {-15,
13, 10, 14, -1, 19, 19, -6, 1, -3, -6, -10, -19,
11}, {-13, -18, -12, -6, -5, -5, 14, -8, 5, 6, 10, 19, -15,
13}, {9, -18, 6, 10, 8, -3, -18, -5, 18, 17, 16,
6, -18, -12}, {-13, -15, -2, -13, 0, 20, -1, -16, 1, 3, 15, 13, 6,
10}, {4, -9, 5, 11, -17, -4, -1, 10, 17, 8, 17, 1, -7, 18}, {1, -18,
1, -2, 7, -7, -1, 2, -20, 7, 7, -13, -16, 9}, {10, -1,
16, -20, -4, -1, -17, -1, -15, 16, 1, 9, 16, 13}};
N->matrix = {{-10, 6, 4, -16, 9, 12, 0, -2, 4, -15, 18, 10, -3, -6}, {12, 14,
0, -3, 2, -17, 8, -19, 20, -14, -20, -6, 7, 17}, {7, -15, -14,
13, -12, 18, 3, 6, -18, -12, -10, -6, 19, -13}, {7, 19, 12, 4, -1,
5, -16, 13, 4, 12, -18, -4, 16, 8}, {-18, 8, -15, -4, 7, 0, -3,
6, -14, -18, 8, 10, 14, 6}, {-11, 17, 4, -11, -5, -3, 6, -20, 4,
18, -5, -16, 2, 8}, {6, 6, -9, 18, -4, 5, -9, 18, -19, 4, -5, 15, 3,
16}, {-11, -7, -10, 1, 12, -9, -8, -1, -20, 6,
14, -13, -18, -15}, {-19, 8, -15, -8, -6, 13, -20, -17, 3,
11, -4, -15, 2, -7}, {-7, -9, -5, 2, -15, 17, -19, 5, -15, -5, 11,
17, 12, -15}, {16, 14, 12, -12, -13, 0, -16, -12, 20, -20, -8, 16,
16, 4}, {3, 7, 13, 11, 6, -1, -17, -10, -14, -5, -14, 15,
11, -12}, {4, 16, -2, -9, -6, 7, 6, 17, 13, -9, 10, -16,
0, -19}, {18, -17, -12, 2, 7, -15, 9, -7, 10, 17, 14, 10, 20, 3}};
O->matrix = {{161, -75, 489, -193, 625, -1012, 465, 281, 539, 134, 12, -279, -850,
743}, {14, -221, -371, 435, -298, 1035, -882, 325, -850, -113, 30,
722, 1105, -620}, {285, -62, -805, -38, 56, 6, -120, 464, 119, -446,
439, 159, 789, -54}, {-221, -608, -278, 489, -550, 1175, 56,
555, -859, 510, 91, 253, 74, 101}, {-732, 846, 23, -431, -415,
536, -998, 536, -378, -436,
299, -36, -223, -310}, {-579, -412, -577, -131,
175, -138, -271, -1222, -402, 928, 142, -504, 247, -367}, {146,
323, -604, -596, 193, -431, 352, -458, 720, -973, -76, -787, 216,
15}, {461, 69, -348, 659, -245, -385, 192, -273, -144,
1045, -1049, -193, 719, 1361}, {359, -451, 189,
623, -120, -91, -831, -163, -482, 613, -111, 1260, 406, 165}, {-833,
15, 247, -398, -465, 1107, -1383, -416, -393, -414, -64, 578,
585, -630}, {238, 149, 256, -152, -532, 20, -73, -552, 305,
280, -72, 372, 634, -103}, {390, -357, -54, -38, -297,
300, -938, -422, 177, 599, 85, 229, 540, -450}, {192, -1007, -74,
185, 80, -51, 182, 568, -490, -76, 777, 943, 96,
149}, {366, -870, -119, -188, -165, 237, 567, -60, -6, -821, 888,
346, 393, -1238}};
Matrix* P = multiply(M,N);
assert(isEqual(O, P));
free(M);
free(N);
free(O);
free(P);
cout << "all Strassen tests pass" << endl;
}
void testfindOptDim(){
assert(findOptDim(258,17) == 272);
assert(findOptDim(513,15) == 576);
assert(findOptDim(1025,15) == 1152);
cout << "all findOptDim tests pass" << endl;
}
void testInitPadding(){
Matrix* A = new Matrix();
initMatrix(A,2);
Matrix* B = new Matrix();
initMatrix(B,4);
A->matrix = {{1,1},{1,1}};
B->matrix = {{1,1,0,0},{1,1,0,0},{0,0,0,0},{0,0,0,0}};
initPadding(A,4);
assert(isEqual(A,B));
cout << "all initPadding tests pass" << endl;
}
void testPowers2(){
for (int i = 2; i <= 4096; i *= 2){
Matrix* m1 = new Matrix();
initMatrix(m1, i);
Matrix* m2 = new Matrix();
initMatrix(m2, i);
//cout << "populating m1" << endl;
populateRandomMatrix(m1, -10, 10);
//cout << "populating m2" << endl;
populateRandomMatrix(m2, -10, 10);
//cout << "multiplying matrices, n = " << i << endl;
clock_t start;
start = clock();
Matrix* m3 = multiply(m1, m2);
cout << "multiplied " << i << "x" << i << " in " << ((double) (clock() - start) / (double)(CLOCKS_PER_SEC)) << "s" << endl;
delete(m1);
delete(m2);
delete(m3);
}
}
// convert from newline separated values to matrix type
Matrix* FileToMatrix(char* inputfile, int dimension, int order){
Matrix* M = new Matrix();
initMatrix(M, dimension);
ifstream inFile(inputfile);
string line;
for (int i = 0; i < pow(dimension,2)*order; ++i)
{
getline(inFile, line);
}
for (int i = 0; i < dimension; ++i)
{
for (int j = 0; j < dimension; ++j)
{
getline(inFile, line);
M->matrix[i][j] = stoi(line);
}
}
inFile.close();
return M;
}
// print diagonal of output matrix
void printDiagonal(Matrix* M, int dimension){
for (int i = 0; i < dimension; ++i) {
printf("%d\n", M->matrix[i][i]);
}
}
int main(int argc, char *argv[]){
convThreshold = 32;
threadThresh = 512;
if (argc == 2){
switch (stoi(argv[1])){
case 1:
testStrasMult();
return 0;
case 2:
testConvMult();
return 0;
case 3:
testfindOptDim();
return 0;
case 4:
testInitPadding();
return 0;
case 5:
testRandMatrix();
return 0;
case 6:
testPowers2();
return 0;
case 7:
findOptimalThreadThresh();
return 0;
case 8:
findOptimalconvThreshold();
return 0;
default:
return -1;
}
return 0;
}
else if (argc == 3 && stoi(argv[1]) == 9){
cout << timeRandMult(stoi(argv[2]));
}
else if (argc != 4)
std::cout<<"Incorrect numargs, proper: \'0 dimension inputfile\'";
else if (stoi(argv[1]) == 0)
{
int dimension = atoi(argv[2]);
char* inputfile = argv[3];
Matrix* A = FileToMatrix(inputfile, dimension, 0);
Matrix* B = FileToMatrix(inputfile, dimension, 0);
Matrix* C = multiply(A,B);
printDiagonal(C, dimension);
return 0;
}
else return -1;
}