-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquickbind.py
550 lines (513 loc) · 25.4 KB
/
quickbind.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import torch
from torch import nn
import pytorch_lightning as pl
from commons.modified_of_modules import (
InputEmbedder, EvoformerStack, StructureModule,
BackboneUpdate, GatedInvariantPointAttention,
FullEvoformerStack
)
from openfold.model.structure_module import StructureModuleTransition, InvariantPointAttention
from openfold.model.primitives import Linear, LayerNorm
from openfold.utils.rigid_utils import Rigid, Rotation
from functools import partial
from openfold.model.heads import DistogramHead
from openfold.utils.loss import distogram_loss
torch.cuda.empty_cache()
class QuickBind(nn.Module):
def __init__(
self,
# INPUT EMBEDDINGS #
aa_feat, lig_atom_feat, c_emb, c_s, c_z, use_op_edge_embed, use_pairwise_dist, use_radial_basis,
use_rel_pos, use_multimer_rel_pos, mask_off_diagonal, one_hot_adj, use_topological_distance,
# EVOFORMER #
c_hidden_msa_att, c_hidden_opm, c_hidden_mul, c_hidden_pair_att, c_s_out,
no_heads_msa, no_heads_pair, no_evo_blocks, transition_n, msa_dropout,
pair_dropout, opm_first, chunk_size,
# STRUCTURE MODULE #
c_hidden, no_heads, no_qk_points, no_v_points,
num_struct_blocks, dropout_rate,
no_transition_layers, share_ipa_weights,
use_gated_ipa = True, communicate = False,
sum_pool = False, mean_pool = False, att_update = True,
# RECYCLING #
recycle = False, recycle_iters = 1,
# LOSS FUNCTION #
use_aux_head=False, use_lig_aux_head=False, no_dist_bins=64, no_dist_bins_lig=42,
construct_frames=True,
# GLOBAL SETTINGS #
use_full_evo_stack=False, blackhole_init=False,
# OUTPUT EMBEDDING #
output_s=False
):
super(QuickBind, self).__init__()
self.inputembedder = InputEmbedder(
aa_feat, lig_atom_feat, c_emb, c_s, c_z, use_op_edge_embed, use_pairwise_dist, use_radial_basis,
use_rel_pos, use_multimer_rel_pos, mask_off_diagonal, one_hot_adj, use_topological_distance
)
# EVOFORMER #
if no_evo_blocks > 0:
if use_full_evo_stack:
self.evoformer = FullEvoformerStack(
c_s, c_z, c_hidden_msa_att, c_hidden_opm, c_hidden_mul, c_hidden_pair_att, c_s_out,
no_heads_msa, no_heads_pair, no_evo_blocks, transition_n, msa_dropout,
pair_dropout, opm_first=opm_first
)
else:
self.evoformer = EvoformerStack(
c_s, c_z, c_hidden_msa_att, c_hidden_opm, c_hidden_mul, c_hidden_pair_att, c_s_out,
no_heads_msa, no_heads_pair, no_evo_blocks, transition_n, msa_dropout,
pair_dropout, opm_first=opm_first
)
self.no_evo_blocks = no_evo_blocks
self.chunk_size = chunk_size
# STRUCTURE MODULE #
self.layer_norm_s = LayerNorm(c_s_out)
self.layer_norm_z = LayerNorm(c_z)
self.linear_in = Linear(c_s_out, c_s_out)
self.num_struct_blocks = num_struct_blocks
self.share_ipa_weights = share_ipa_weights
if share_ipa_weights:
self.structure_module_block = StructureModule(
c_s_out, c_z, c_hidden, no_heads, no_qk_points, no_v_points, dropout_rate,
no_transition_layers, sum_pool, mean_pool, att_update, use_gated_ipa, construct_frames
)
else:
if use_gated_ipa:
self.ipa_blocks = nn.ModuleList([
GatedInvariantPointAttention(
c_s, c_z, c_hidden, no_heads, no_qk_points, no_v_points
) for _ in range(num_struct_blocks)
])
else:
self.ipa_blocks = nn.ModuleList([
InvariantPointAttention(
c_s, c_z, c_hidden, no_heads, no_qk_points, no_v_points
) for _ in range(num_struct_blocks)
])
self.ipa_dropout = nn.Dropout(dropout_rate)
self.layer_norm_ipa = LayerNorm(c_s)
self.transition = StructureModuleTransition(c_s, no_transition_layers, dropout_rate)
self.bb_update = BackboneUpdate(c_s, sum_pool, mean_pool, att_update, construct_frames)
# RECYCLING EMBEDDINGS #
self.recycle = recycle
self.recycle_iters = recycle_iters
if recycle:
self.layer_norm_s_recycle = LayerNorm(c_s)
self.layer_norm_z_recycle = LayerNorm(c_z)
self.linear_z_recycle = Linear(1, c_z)
# AUXILIARY HEADS #
self.use_aux_head = use_aux_head
self.use_lig_aux_head = use_lig_aux_head
if self.use_aux_head:
self.distogram = DistogramHead(c_z, no_dist_bins)
if self.use_lig_aux_head:
self.lig_distogram = DistogramHead(c_z, no_dist_bins_lig)
self.communicate = communicate
if self.communicate:
self.linear_a_i = Linear(c_s, c_z)
self.linear_b_i = Linear(c_s, c_z)
self.linear_dist = Linear(1, c_z)
self.construct_frames = construct_frames
self.blackhole_init = blackhole_init
self.pooled_update = bool(sum_pool or mean_pool or att_update)
self.output_s = output_s
def iteration(
self, aatype, lig_atom_features, adj, s_prev, z_prev, t_prev, ri, mask, edge_mask,
N, t_rec, C, rec_mask, lig_mask, pseudo_N, pseudo_C
):
# INPUT EMBEDDINGS #
s, z = self.inputembedder(aatype, lig_atom_features, t_prev, edge_mask, adj, ri)
t_lig = t_prev[:, rec_mask.shape[-1]:, :]
if self.construct_frames and not self.blackhole_init:
rigids = Rigid.cat(
[
Rigid.from_3_points(N, t_rec, C),
Rigid.from_3_points(pseudo_N, t_lig, pseudo_C)
], dim=1
)
else:
rigids = Rigid.cat(
[
Rigid.from_3_points(N, t_rec, C),
Rigid(
rots = Rotation.identity(
shape=t_lig.shape[:-1], dtype = torch.float32, device=t_lig.device, fmt="quat"
), trans = t_lig
)
], dim=1
)
# RECYCLING EMBEDDINGS #
if None not in [s_prev, z_prev]:
s_prev = self.layer_norm_s_recycle(s_prev)
pairwise_distance_prev = (torch.cdist(t_prev, t_prev, p=2) * edge_mask).unsqueeze(-1).to(dtype=torch.float32)
z_prev = self.linear_z_recycle(pairwise_distance_prev) + self.layer_norm_z_recycle(z_prev)
s = s + s_prev
z = z + z_prev
# EVOFORMER #
if self.no_evo_blocks > 0:
s = s.unsqueeze(-3)
msa_mask = mask.unsqueeze(-2)
s, z = self.evoformer(
s, z,
msa_mask=msa_mask,
pair_mask=edge_mask,
chunk_size=self.chunk_size
)
if self.recycle:
s_prev, z_prev = s, z
if self.output_s:
s_pre_struct = s
# STRUCTURE MODULE #
s = self.layer_norm_s(s)
z = self.layer_norm_z(z)
s = self.linear_in(s)
out = []
if self.share_ipa_weights:
blocks = [
partial(
self.structure_module_block, mask=mask, rec_mask=rec_mask, lig_mask=lig_mask
) for _ in range(self.num_struct_blocks)
]
for block in blocks:
s, z, new_trans = block(s, z, rigids)
if not self.pooled_update:
new_trans = new_trans[:, rec_mask.shape[-1]:, :]
new_trans = new_trans * lig_mask.unsqueeze(-1)
if self.construct_frames:
rigids_ligand = rigids[:, rec_mask.shape[-1]:]
rigids_protein = rigids[:, :rec_mask.shape[-1]]
rigids_ligand_updated = rigids_ligand.compose_q_update_vec(new_trans)
updated_rigids = Rigid.cat([rigids_protein, rigids_ligand_updated], dim=1)
else:
update = torch.cat([torch.zeros_like(rigids.get_trans()[:, :rec_mask.shape[-1], :]), new_trans], dim=-2)
updated_rigids = Rigid(
rots = rigids.get_rots(),
trans = rigids.get_trans() + update
)
rigids = updated_rigids
out.append(updated_rigids)
if self.construct_frames:
rigids = rigids.stop_rot_gradient()
else:
for ipa in self.ipa_blocks:
s = s + ipa(s, z, rigids, mask)
s = self.ipa_dropout(s)
s = self.layer_norm_ipa(s)
s = self.transition(s)
new_trans = self.bb_update(s, rec_mask, lig_mask)
if not self.pooled_update:
new_trans = new_trans[:, rec_mask.shape[-1]:, :]
new_trans = new_trans * lig_mask.unsqueeze(-1)
if self.construct_frames:
rigids_ligand = rigids[:, rec_mask.shape[-1]:]
rigids_protein = rigids[:, :rec_mask.shape[-1]]
rigids_ligand_updated = rigids_ligand.compose_q_update_vec(new_trans)
updated_rigids = Rigid.cat([rigids_protein, rigids_ligand_updated], dim=1)
else:
update = torch.cat([torch.zeros_like(rigids.get_trans()[:, :rec_mask.shape[-1], :]), new_trans], dim=-2)
updated_rigids = Rigid(
rots = rigids.get_rots(),
trans = rigids.get_trans() + update
)
rigids = updated_rigids
out.append(updated_rigids)
if self.communicate:
ti = rigids.get_trans()
a_i = self.linear_a_i(s)
b_i = self.linear_b_i(s)
pair_emb = a_i[..., None, :] + b_i[..., None, :, :]
dist = (torch.cdist(ti, ti, p=2) * edge_mask).unsqueeze(-1).to(dtype=torch.float32)
pairwise_distance = self.linear_dist(dist)
pair_emb = pair_emb + pairwise_distance
z = z + pair_emb
if self.construct_frames:
rigids = rigids.stop_rot_gradient()
if self.recycle: t_prev = rigids.get_trans()
if (self.use_aux_head or self.use_lig_aux_head) and self.is_final_iter:
if self.output_s:
return out, s, s_prev, z, t_prev, s_pre_struct
else:
return out, s, s_prev, z, t_prev
else:
if self.output_s:
return out, s, s_prev, z_prev, t_prev, s_pre_struct
else:
return out, s, s_prev, z_prev, t_prev
def forward(self, aatype, lig_atom_features, adj, rec_mask, lig_mask, N, t_rec, C, t_lig, ri, pseudo_N, pseudo_C):
is_grad_enabled = torch.is_grad_enabled()
# RECYCLING #
s_prev, z_prev = None, None
t_prev = torch.cat([t_rec, t_lig], dim=-2)
mask = torch.cat([rec_mask, lig_mask], dim=-1).to(dtype=torch.float32)
edge_mask = mask.unsqueeze(-1) * mask.unsqueeze(-2)
for iteration in range(self.recycle_iters):
self.is_final_iter = (iteration == (self.recycle_iters-1))
with torch.set_grad_enabled(is_grad_enabled and self.is_final_iter):
if self.is_final_iter and torch.is_autocast_enabled(): # Sidestep AMP bug (PyTorch issue #65766)
torch.clear_autocast_cache()
if self.output_s:
outputs, s, s_prev, z_prev, t_prev, s_pre_struct = self.iteration(
aatype, lig_atom_features, adj, s_prev, z_prev, t_prev, ri, mask, edge_mask,
N, t_rec, C, rec_mask, lig_mask, pseudo_N, pseudo_C
)
else:
outputs, s, s_prev, z_prev, t_prev = self.iteration(
aatype, lig_atom_features, adj, s_prev, z_prev, t_prev, ri, mask, edge_mask,
N, t_rec, C, rec_mask, lig_mask, pseudo_N, pseudo_C
)
if not self.is_final_iter: del outputs, s
if self.use_aux_head and self.use_lig_aux_head:
distogram_logits_full = self.distogram(z_prev)
distogram_logits_lig = self.lig_distogram(z_prev[:, rec_mask.shape[-1]:, rec_mask.shape[-1]:])
distogram_logits = (distogram_logits_full, distogram_logits_lig)
if self.output_s:
return outputs, distogram_logits, s_pre_struct
else:
return outputs, distogram_logits
elif self.use_aux_head:
distogram_logits = self.distogram(z_prev)
if self.output_s:
return outputs, distogram_logits, s_pre_struct
else:
return outputs, distogram_logits
elif self.use_lig_aux_head:
distogram_logits = self.lig_distogram(z_prev[:, rec_mask.shape[-1]:, rec_mask.shape[-1]:])
if self.output_s:
return outputs, distogram_logits, s_pre_struct
else:
return outputs, distogram_logits
else:
if self.output_s:
return outputs, s_pre_struct
else:
return outputs
class QuickBind_PL(pl.LightningModule):
def __init__(
self,
# INPUT EMBEDDINGS #
aa_feat, lig_atom_feat, c_emb, c_s, c_z, use_op_edge_embed,
use_pairwise_dist, use_radial_basis, use_rel_pos, use_multimer_rel_pos,
mask_off_diagonal, one_hot_adj, use_topological_distance,
# EVOFORMER #
c_hidden_msa_att, c_hidden_opm, c_hidden_mul, c_hidden_pair_att, c_s_out,
no_heads_msa, no_heads_pair, no_evo_blocks, transition_n, msa_dropout,
pair_dropout, opm_first, chunk_size,
# STRUCTURE MODULE #
c_hidden, no_heads, no_qk_points, no_v_points,
num_struct_blocks, dropout_rate,
no_transition_layers, share_ipa_weights,
use_gated_ipa = False, communicate = False,
sum_pool = False, mean_pool = False, att_update=False,
# RECYCLING #
recycle = False, recycle_iters = 1,
# LOSS FUNCTION #
loss_config = None,
use_aux_head=False, use_lig_aux_head=False, no_dist_bins=64, no_dist_bins_lig=42,
construct_frames=False,
use_full_evo_stack=False, blackhole_init=False,
# LEARNING RATE #
lr=1.0e-5, weight_decay=1.0e-4,
):
super().__init__()
self.model = QuickBind(
# INPUT EMBEDDINGS #
aa_feat, lig_atom_feat, c_emb, c_s, c_z, use_op_edge_embed,
use_pairwise_dist, use_radial_basis, use_rel_pos, use_multimer_rel_pos,
mask_off_diagonal, one_hot_adj, use_topological_distance,
# EVOFORMER #
c_hidden_msa_att, c_hidden_opm, c_hidden_mul, c_hidden_pair_att, c_s_out,
no_heads_msa, no_heads_pair, no_evo_blocks, transition_n, msa_dropout,
pair_dropout, opm_first, chunk_size,
# STRUCTURE MODULE #
c_hidden, no_heads, no_qk_points, no_v_points,
num_struct_blocks, dropout_rate,
no_transition_layers, share_ipa_weights,
use_gated_ipa, communicate,
sum_pool, mean_pool, att_update,
# RECYCLING #
recycle, recycle_iters,
# AUXILIARY HEADS #
use_aux_head, use_lig_aux_head, no_dist_bins, no_dist_bins_lig,
construct_frames, use_full_evo_stack, blackhole_init
)
self.loss = QuickBindLoss(**loss_config, use_aux_head=use_aux_head, use_lig_aux_head=use_lig_aux_head)
self.use_aux_head = use_aux_head
self.use_lig_aux_head = use_lig_aux_head
self.lr = lr
self.weight_decay = weight_decay
self.save_hyperparameters()
def forward(self, batch):
return self.model(*batch)
def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.model.parameters(), lr=self.lr, weight_decay=self.weight_decay)
return optimizer
def training_step(self, batch, idx):
batch, t_true = batch
_, _, _, rec_mask, lig_mask, _, _, _, _, _, _, _ = batch
if self.use_aux_head or self.use_lig_aux_head:
outputs, distogram_logits = self.model(*batch)
else:
outputs = self.model(*batch)
distogram_logits = None
loss, (
lig_lig_loss, lig_rec_loss, aux_loss, steric_clash_loss, full_distogram_loss
), rmsd = self.loss(t_true, outputs, lig_mask, rec_mask, distogram_logits)
self.log('train_loss', loss)
self.log('train_lig_lig_loss', lig_lig_loss)
self.log('train_lig_rec_loss', lig_rec_loss)
self.log('train_aux_loss', aux_loss)
self.log('train_steric_clash_loss', steric_clash_loss)
self.log('train_full_distogram_loss', full_distogram_loss)
self.log('train_rmsd', rmsd)
return loss
def validation_step(self, batch, idx):
batch, t_true = batch
_, _, _, rec_mask, lig_mask, _, _, _, _, _, _, _ = batch
if self.use_aux_head or self.use_lig_aux_head:
outputs, distogram_logits = self.model(*batch)
else:
outputs = self.model(*batch)
distogram_logits = None
loss, (
lig_lig_loss, lig_rec_loss, aux_loss, steric_clash_loss, full_distogram_loss
), rmsd = self.loss(t_true, outputs, lig_mask, rec_mask, distogram_logits,)
self.log('val_loss', loss, sync_dist=True)
self.log('val_lig_lig_loss', lig_lig_loss, sync_dist=True)
self.log('val_lig_rec_loss', lig_rec_loss, sync_dist=True)
self.log('val_aux_loss', aux_loss, sync_dist=True)
self.log('val_steric_clash_loss', steric_clash_loss, sync_dist=True)
self.log('val_full_distogram_loss', full_distogram_loss, sync_dist=True)
self.log('val_rmsd', rmsd, sync_dist=True)
return loss
class QuickBindLoss(nn.Module):
def __init__(
self, lig_lig_loss_weight, lig_rec_loss_weight, aux_loss_weight,
steric_clash_loss_weight, full_distogram_loss_weight, clamp_distance = None, eps = 1e-8,
use_aux_head=False, use_lig_aux_head=False,
):
super().__init__()
self.lig_lig_loss_weight = lig_lig_loss_weight
self.lig_rec_loss_weight = lig_rec_loss_weight
self.aux_loss_weight = aux_loss_weight
self.steric_clash_loss_weight = steric_clash_loss_weight
self.full_distogram_loss_weight = full_distogram_loss_weight
self.eps = eps
self.clamp_distance = clamp_distance
self.use_aux_head = use_aux_head
self.use_lig_aux_head = use_lig_aux_head
def compute_fape_lig_lig(
self,
pred_frames: Rigid,
target_frames: Rigid,
pred_positions: torch.Tensor,
target_positions: torch.Tensor,
mask: torch.Tensor
) -> torch.Tensor:
# [*, N_frames, N_frames, 3]
local_pred_pos = pred_frames.invert()[..., None].apply(
pred_positions[..., None, :, :],
)
local_target_pos = target_frames.invert()[..., None].apply(
target_positions[..., None, :, :],
)
error = torch.sqrt(
torch.sum((local_pred_pos - local_target_pos) ** 2, dim=-1) + self.eps
)
edge_mask = mask.unsqueeze(-1) * mask.unsqueeze(-2)
error = error * edge_mask
error = torch.sum(torch.sum(error, dim=-1), dim=-1) / torch.sum(mask, dim=-1)**2
return torch.mean(error)
def compute_fape_lig_rec(
self,
pred_positions: torch.Tensor,
target_positions: torch.Tensor,
protein_frames: Rigid,
lig_mask: torch.Tensor,
rec_mask: torch.Tensor,
clamp_distance = None,
) -> torch.Tensor:
# [*, N_protein_frames, N_lig_frames, 3]
local_pred_pos = protein_frames.invert()[..., None].apply(
pred_positions[..., None, :, :],
)
local_target_pos = protein_frames.invert()[..., None].apply(
target_positions[..., None, :, :],
)
error = torch.sqrt(
torch.sum((local_pred_pos - local_target_pos) ** 2, dim=-1) + self.eps
)
edge_mask = rec_mask.unsqueeze(-1) * lig_mask.unsqueeze(-2)
error = error * edge_mask
if clamp_distance is not None:
error = torch.clamp(error, min=0, max=clamp_distance)
error = torch.sum(torch.sum(error, dim=-1), dim=-1) / (torch.sum(rec_mask, dim=-1) * torch.sum(lig_mask, dim=-1))
return torch.mean(error)
def compute_rmsd(self, ti, t_true, mask):
error = (ti - t_true) * mask.unsqueeze(-1)
error = torch.sum(torch.sum(error**2, dim=-1), dim=-1) / (torch.sum(mask, dim=-1))
return torch.mean(torch.sqrt(error + self.eps))
def compute_steric_clash_loss_lig(self, ti, lig_mask):
edge_mask = lig_mask.unsqueeze(-1) * lig_mask.unsqueeze(-2)
pairwise_distances = torch.cdist(ti, ti, p=2) * edge_mask
error = torch.nn.functional.relu(0.5 - pairwise_distances)
error = torch.sum(torch.sum(torch.tril(error, diagonal=-1), dim=-1), dim=-1)
return torch.mean(error)
def compute_kabsch_rmsd(self, ti_batch, t_true_batch, mask):
transformed_coords = []
for ti, t_true in zip(ti_batch, t_true_batch):
try:
lig_coords_pred_mean = ti.mean(dim=0, keepdim=True, dtype=torch.float32) # (1,3)
lig_coords_mean = t_true.mean(dim=0, keepdim=True, dtype=torch.float32) # (1,3)
A = ((ti - lig_coords_pred_mean).transpose(0, 1) @ (t_true - lig_coords_mean)).to(dtype=torch.float32)
U, S, Vt = torch.linalg.svd(A)
corr_mat = torch.diag(torch.tensor([1, 1, torch.sign(torch.det(A))], device=ti.device))
rotation = (U @ corr_mat) @ Vt
translation = lig_coords_pred_mean - torch.t(rotation @ lig_coords_mean.t()) # (1,3)
transformed_coords.append((rotation @ t_true.t()).t() + translation)
return self.compute_pos_loss(ti_batch, torch.stack(transformed_coords), mask)
except Exception:
print('Computing Kabsch RMSD failed.')
return torch.zeros(1, requires_grad=True, dtype=torch.float32, device=ti_batch.device)
def compute_pos_loss(self, ti, t_true, mask):
error = (ti - t_true) * mask.unsqueeze(-1)
error = torch.sum(torch.sum(error**2, dim=-1), dim=-1) / (3*torch.sum(mask, dim=-1))
return torch.mean(error)
def forward(self, target_frames, outputs, lig_mask, rec_mask, distogram_logits):
target_frames = target_frames.cuda()
pred_frames = outputs[-1][:, rec_mask.shape[-1]:]
rec_frames = outputs[-1][:, :rec_mask.shape[-1]]
target_positions = target_frames.get_trans()
pred_positions = pred_frames.get_trans()
lig_lig_loss = self.compute_fape_lig_lig(pred_frames, target_frames, pred_positions, target_positions, lig_mask)
lig_rec_loss = self.compute_fape_lig_rec(pred_positions, target_positions, rec_frames, lig_mask, rec_mask, self.clamp_distance)
aux_loss = torch.mean(torch.stack([
self.compute_fape_lig_rec(pred_frames[:, rec_mask.shape[-1]:].get_trans(), target_positions, rec_frames, lig_mask, rec_mask, self.clamp_distance) for pred_frames in outputs
]))
steric_clash_loss = self.compute_kabsch_rmsd(pred_positions, target_positions, lig_mask) if self.steric_clash_loss_weight > 0 else 0.0
rmsd = self.compute_rmsd(pred_positions, target_positions, lig_mask)
if self.use_aux_head and self.use_lig_aux_head:
distogram_logits_full, distogram_logits_lig = distogram_logits
pseudo_beta_mask = torch.cat([rec_mask, lig_mask], dim=-1)
pseudo_beta = torch.cat([rec_frames.get_trans(), pred_positions], dim=-2)
rec_lig_distogram_loss = distogram_loss(distogram_logits_full, pseudo_beta, pseudo_beta_mask, min_bin=2.3125, max_bin=21.6875, no_bins=64)
lig_lig_distogram_loss = distogram_loss(distogram_logits_lig, pred_positions, lig_mask, min_bin=1., max_bin=5., no_bins=42)
full_distogram_loss = rec_lig_distogram_loss + lig_lig_distogram_loss
elif self.use_aux_head:
pseudo_beta_mask = torch.cat([rec_mask, lig_mask], dim=-1)
pseudo_beta = torch.cat([rec_frames.get_trans(), pred_positions], dim=-2)
full_distogram_loss = distogram_loss(distogram_logits, pseudo_beta, pseudo_beta_mask, min_bin=2.3125, max_bin=21.6875, no_bins=64)
elif self.use_lig_aux_head:
full_distogram_loss = distogram_loss(distogram_logits, pred_positions, lig_mask, min_bin=1., max_bin=5., no_bins=42)
else:
full_distogram_loss = 0.0
loss = (
self.lig_lig_loss_weight * lig_lig_loss + \
self.lig_rec_loss_weight * lig_rec_loss + \
self.aux_loss_weight * aux_loss +\
self.steric_clash_loss_weight * steric_clash_loss +\
self.full_distogram_loss_weight * full_distogram_loss
)
if torch.isnan(loss):
print('Loss is nan, skipping...')
loss = torch.zeros(1, requires_grad=True, dtype=torch.float32, device=lig_lig_loss.device)
return loss, (lig_lig_loss, lig_rec_loss, aux_loss, steric_clash_loss, full_distogram_loss), rmsd