-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrainDeep.py
385 lines (334 loc) · 19.2 KB
/
trainDeep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import pandas as pd
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
from deepctr_torch_local.models import *
from deepctr_torch_local.inputs import SparseFeat, DenseFeat, get_feature_names
from deepctr_torch_local.callbacks import EarlyStopping, ModelCheckpoint
import os
import torch
import random
import numpy as np
import pandas as pd
import argparse
from sklearn.preprocessing import LabelEncoder
from sklearn import metrics
from sklearn.preprocessing import KBinsDiscretizer
import matplotlib.pyplot as plt
from tqdm import tqdm
import warnings
warnings.filterwarnings('ignore')
from utils import set_random_seed, get_logger, ensure_dir, str2bool, str2float
ensure_dir('ckpt/')
ensure_dir('log/')
ensure_dir('output/')
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str,
default='xDeepFM', help='the name of model')
parser.add_argument('--exp_id', type=str, default=None, help='id of experiment')
parser.add_argument('--seed', type=int, default=2023, help='random seed')
parser.add_argument('--dense_bins', type=int, default=10, help='dense_bins')
parser.add_argument('--sparse_dim', type=int, default=4, help='sparse_dim')
parser.add_argument('--add_dense', type=str2bool, default=False, help='add_dense')
parser.add_argument('--device', type=int, default=3, help='device')
parser.add_argument('--batch_size', type=int, default=256, help='batch_size')
parser.add_argument('--epochs', type=int, default=50, help='epochs')
parser.add_argument('--patience', type=int, default=10, help='patience')
parser.add_argument('--cross_num', type=int, default=4, help='cross_num')
parser.add_argument('--heads', type=int, default=4, help='heads')
parser.add_argument('--strategy', type=str, default='kmeans', help='strategy') # ["uniform"等宽, "quantile"等频, "kmeans"聚类]
parser.add_argument('--f1', type=int, default=256, help='f1')
parser.add_argument('--f2', type=int, default=256, help='f2')
parser.add_argument('--f3', type=int, default=256, help='f3')
parser.add_argument('--f4', type=int, default=128, help='f4')
parser.add_argument('--dropout', type=float, default=0.0, help='dropout')
parser.add_argument('--lr', type=float, default=0.001, help='lr')
parser.add_argument('--load_path', type=str, default=None, help='load path')
parser.add_argument('--local_test', type=str2bool, default=False, help='local_test')
parser.add_argument('--binary_cross', type=str2bool, default=False, help='binary_cross')
parser.add_argument('--multi_cross', type=str2bool, default=False, help='multi_cross')
parser.add_argument('--num_cross', type=str2bool, default=False, help='num_cross')
parser.add_argument('--target_encode', type=str2bool, default=False, help='target_encode')
args = parser.parse_args()
dense_bins = args.dense_bins
sparse_dim = args.sparse_dim
dense_dim = 1
strategy = args.strategy
add_dense = args.add_dense
dropout = args.dropout
local_test = args.local_test
lr = args.lr
binary_cross = args.binary_cross
multi_cross = args.multi_cross
num_cross = args.num_cross
target_encode = args.target_encode
device = 'cuda:{}'.format(args.device)
model_name = args.model
batch_size = args.batch_size
epochs = args.epochs
patience = args.patience
cross_num = args.cross_num # for DCN-V, DCN-M, DCN-Mix
heads = args.heads # autoint DIFM
seed = args.seed
set_random_seed(seed)
config = locals()
# 加载必要的数据
exp_id = args.exp_id
if exp_id is None:
exp_id = int(random.SystemRandom().random() * 100000)
config['exp_id'] = exp_id
logger = get_logger(config)
logger.info('Exp_id {}'.format(exp_id))
logger.info(config)
logger.info('read data')
test_data = pd.read_csv('data/test/000000000000.csv', sep='\t')
logger.info('test_data: {}'.format(test_data.shape))
train_data = pd.read_csv('./data/train.csv', sep='\t')
logger.info('train_data: {}'.format(train_data.shape))
cat_features = ['f_{}'.format(i) for i in range(1, 42) if i != 30 and i != 31]
bin_features = ['f_{}'.format(i) for i in range(33, 42)]
num_features = ['f_{}'.format(i) for i in range(42, 80)]
date_features = ['f_1']
sparse_features = cat_features
dense_features = num_features
logger.info('sparse_features: {}'.format(sparse_features))
logger.info('dense_features: {}'.format(dense_features))
target = ['is_installed']
# if not target_encode:
# data_path = 'data/data_dense_bins{}_{}_updatef1.csv'.format(dense_bins, strategy)
# else:
# data_path = 'data/data_dense_bins{}_{}_updatef1_target_encode.csv'.format(dense_bins, strategy)
if not target_encode:
data_path = 'data/data_dense_bins{}_{}.csv'.format(dense_bins, strategy)
else:
data_path = 'data/data_dense_bins{}_{}_target_encode.csv'.format(dense_bins, strategy)
logger.info('data path: {}'.format(data_path))
if os.path.exists(data_path):
data = pd.read_csv(data_path)
logger.info('Load data: {}'.format(data.shape))
add_sparse_features = [fea + '_encode' for fea in dense_features]
len_feas = {}
for feat in sparse_features:
len_feas[feat] = data[feat].nunique()
else:
data = pd.concat([train_data, test_data])
len_feas = {}
for feat in sparse_features:
len_feas[feat] = data[feat].nunique()
logger.info('New data: {}'.format(data.shape))
dense_mean = data[dense_features].mean()
# data[sparse_features] = data[sparse_features].fillna(-1, )
data[dense_features] = data[dense_features].fillna(dense_mean, )
# 数据处理
for feat in sparse_features:
if feat == 'f_1':
data[feat] = data[feat] - 45 # 45是最小的
else:
lbe = LabelEncoder()
data[feat] = lbe.fit_transform(data[feat])
add_sparse_features = []
for fea in tqdm(dense_features, total=len(dense_features)):
# TODO: random_state = seed
discretizer = KBinsDiscretizer(n_bins=dense_bins, encode='ordinal', strategy=strategy, random_state=seed) # 等频quantile,等宽uniform
data[fea + '_encode'] = discretizer.fit_transform(np.array(data[fea].tolist()).reshape(-1, 1))
add_sparse_features.append(fea + '_encode')
data.to_csv(data_path, index=False)
logger.info('add_sparse_features: {}'.format(add_sparse_features))
if binary_cross:
binary_cross_features = []
for i in tqdm(range(len(bin_features)), total=len(bin_features), desc='binary_cross'):
for j in range(i + 1, len(bin_features)):
data[f'{bin_features[i]}and{bin_features[j]}'] = data[bin_features[i]] & data[bin_features[j]]
data[f'{bin_features[i]}or{bin_features[j]}'] = data[bin_features[i]] | data[bin_features[j]]
data[f'{bin_features[i]}xor{bin_features[j]}'] = data[bin_features[i]] ^ data[bin_features[j]]
binary_cross_features.append(f'{bin_features[i]}and{bin_features[j]}')
binary_cross_features.append(f'{bin_features[i]}or{bin_features[j]}')
binary_cross_features.append(f'{bin_features[i]}xor{bin_features[j]}')
logger.info('binary_cross_features: {}'.format(binary_cross_features))
logger.info('binary_cross data: {}'.format(data.shape))
for feat in binary_cross_features:
len_feas[feat] = data[feat].nunique()
if multi_cross:
multi_cross_features = []
cat_features_crossuse = ['f_3', 'f_5', 'f_7', 'f_8', 'f_9', 'f_10', 'f_11',
'f_12', 'f_14', 'f_16', 'f_17', 'f_19', 'f_20', 'f_21',
'f_22', 'f_23', 'f_24', 'f_25', 'f_26', 'f_27', 'f_28', 'f_29', 'f_32', 'f_33',
'f_34', 'f_35', 'f_36', 'f_37', 'f_38', 'f_39', 'f_40', 'f_41']
for i in tqdm(range(len(cat_features_crossuse)), total=len(cat_features_crossuse), desc='multi_cross'):
for j in range(i + 1, len(cat_features_crossuse)):
data[f'{cat_features_crossuse[i]}+{cat_features_crossuse[j]}'] = data[cat_features_crossuse[i]] + data[cat_features_crossuse[j]]
# data[f'{cat_features_crossuse[i]}-{cat_features_crossuse[j]}'] = data[cat_features_crossuse[i]] - data[cat_features_crossuse[j]]
data[f'{cat_features_crossuse[i]}*{cat_features_crossuse[j]}'] = data[cat_features_crossuse[i]] * data[cat_features_crossuse[j]]
# data[f'{cat_features_crossuse[i]}/{cat_features_crossuse[j]}'] = data[cat_features_crossuse[i]] / (data[cat_features_crossuse[j]] + 1e-7)
multi_cross_features.append(f'{cat_features_crossuse[i]}+{cat_features_crossuse[j]}')
multi_cross_features.append(f'{cat_features_crossuse[i]}*{cat_features_crossuse[j]}')
# logger.info('multi_cross_features: {}'.format(multi_cross_features))
logger.info('multi_cross data: {}'.format(data.shape))
for feat in multi_cross_features:
len_feas[feat] = int(data[feat].max() + 1)
if num_cross:
num_cross_features = []
for i in tqdm(range(len(add_sparse_features)), total=len(add_sparse_features), desc='num_cross'):
for j in range(i + 1, len(add_sparse_features)):
data[f'{add_sparse_features[i]}+{add_sparse_features[j]}'] = data[add_sparse_features[i]] + data[add_sparse_features[j]]
# data[f'{add_sparse_features[i]}-{add_sparse_features[j]}'] = data[add_sparse_features[i]] - data[add_sparse_features[j]]
data[f'{add_sparse_features[i]}*{add_sparse_features[j]}'] = data[add_sparse_features[i]] * data[add_sparse_features[j]]
# data[f'{add_sparse_features[i]}/{add_sparse_features[j]}'] = data[add_sparse_features[i]] / (data[add_sparse_features[j]] + 1e-7)
num_cross_features.append(f'{add_sparse_features[i]}+{add_sparse_features[j]}')
num_cross_features.append(f'{add_sparse_features[i]}*{add_sparse_features[j]}')
# logger.info('num_cross_features: {}'.format(num_cross_features))
logger.info('num_cross data: {}'.format(data.shape))
for feat in num_cross_features:
len_feas[feat] = int(data[feat].max() + 1)
print(feat, data[feat].max() + 1)
if local_test:
logger.info('Test local using f_1 = 66!')
local_valid_data = data[data['f_1'] == 21] # 21 + 45 = 66
data = data[data['f_1'] != 21]
logger.info('local_valid_data: {}'.format(local_valid_data.shape))
logger.info('Other data: {}'.format(data.shape))
if add_dense:
mms = MinMaxScaler(feature_range=(0,1))
data[dense_features] = mms.fit_transform(data[dense_features])
fixlen_feature_columns = \
[SparseFeat(feat, vocabulary_size=len_feas[feat], embedding_dim=sparse_dim) for i, feat in enumerate(sparse_features)] + \
[SparseFeat(feat, vocabulary_size=dense_bins, embedding_dim=sparse_dim) for i, feat in enumerate(add_sparse_features)] + \
[DenseFeat(feat, dense_dim) for feat in dense_features]
features = sparse_features + add_sparse_features + dense_features
else:
fixlen_feature_columns = \
[SparseFeat(feat, vocabulary_size=len_feas[feat], embedding_dim=sparse_dim) for i, feat in enumerate(sparse_features)] + \
[SparseFeat(feat, vocabulary_size=dense_bins, embedding_dim=sparse_dim) for i, feat in enumerate(add_sparse_features)]
features = sparse_features + add_sparse_features
if target_encode:
target_fea = [f for f in data.columns if 'is_installed_mean' in f]
fixlen_feature_columns += [DenseFeat(feat, dense_dim) for feat in target_fea]
features += target_fea
print(len(features))
dense_mean_target_fea = data[target_fea].mean()
data[target_fea] = data[target_fea].fillna(dense_mean_target_fea)
if binary_cross:
fixlen_feature_columns += [SparseFeat(feat, vocabulary_size=len_feas[feat], embedding_dim=sparse_dim) for i, feat in enumerate(binary_cross_features)]
features += binary_cross_features
if multi_cross:
fixlen_feature_columns += [SparseFeat(feat, vocabulary_size=len_feas[feat], embedding_dim=sparse_dim) for i, feat in enumerate(multi_cross_features)]
features += multi_cross_features
if num_cross:
fixlen_feature_columns += [SparseFeat(feat, vocabulary_size=len_feas[feat], embedding_dim=sparse_dim) for i, feat in enumerate(num_cross_features)]
features += num_cross_features
dnn_feature_columns = fixlen_feature_columns
linear_feature_columns = fixlen_feature_columns
feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns)
# logger.info('feature_names: {}'.format(feature_names))
# 数据
logger.info('Load Data')
train = data[~data['is_installed'].isna()][features]
test = data[data['is_installed'].isna()][features]
y = data[~data['is_installed'].isna()][target]
logger.info('train shape {}'.format(train.shape))
logger.info('test shape {}'.format(test.shape))
logger.info('y shape {}'.format(y.shape))
if local_test:
local_valid_data_y = local_valid_data[target]
local_valid_data = local_valid_data[features]
train_model_input = {name: train[name] for name in feature_names}
test_model_input = {name: test[name] for name in feature_names}
# 模型
logger.info('Create Model')
if model_name == 'xDeepFM':
model = xDeepFM(linear_feature_columns, dnn_feature_columns, task='binary', device=device, seed=seed, dnn_dropout=dropout,
dnn_hidden_units=(args.f1, args.f2), cin_layer_size=(args.f3, args.f4))
elif model_name == 'DeepFM':
model = DeepFM(linear_feature_columns, dnn_feature_columns, task='binary', device=device, seed=seed, dnn_dropout=dropout,
dnn_hidden_units=(args.f1, args.f2))
elif model_name == 'NFM':
model = NFM(linear_feature_columns, dnn_feature_columns, task='binary', device=device, seed=seed,
bi_dropout=dropout, dnn_dropout=dropout, dnn_hidden_units=(args.f1, args.f2))
elif model_name == 'AFM':
model = AFM(linear_feature_columns, dnn_feature_columns, task='binary', device=device, seed=seed, afm_dropout=dropout)
elif model_name == 'DCN-V':
model = DCN(linear_feature_columns, dnn_feature_columns, task='binary', device=device, seed=seed, dnn_dropout=dropout,
dnn_hidden_units=(args.f1, args.f2), cross_num=cross_num, cross_parameterization='vector')
elif model_name == 'DCN-M':
model = DCN(linear_feature_columns, dnn_feature_columns, task='binary', device=device, seed=seed, dnn_dropout=dropout,
dnn_hidden_units=(args.f1, args.f2), cross_num=cross_num, cross_parameterization='matrix')
elif model_name == 'DCN-Mix':
model = DCNMix(linear_feature_columns, dnn_feature_columns, task='binary', device=device, seed=seed, dnn_dropout=dropout,
dnn_hidden_units=(args.f1, args.f2), cross_num=cross_num)
elif model_name == 'AutoInt':
model = AutoInt(linear_feature_columns, dnn_feature_columns, task='binary', device=device, seed=seed, dnn_dropout=dropout,
dnn_hidden_units=(args.f1, args.f2), att_head_num=heads)
elif model_name == 'WDL':
model = WDL(linear_feature_columns, dnn_feature_columns, task='binary', device=device, seed=seed, dnn_dropout=dropout,
dnn_hidden_units=(args.f1, args.f2))
elif model_name == 'DIFM':
model = DIFM(linear_feature_columns, dnn_feature_columns, task='binary', device=device, seed=seed, dnn_dropout=dropout,
att_head_num=heads, dnn_hidden_units=(args.f1, args.f2))
elif model_name == 'IFM':
model = IFM(linear_feature_columns, dnn_feature_columns, task='binary', device=device, seed=seed, dnn_dropout=dropout,
dnn_hidden_units=(args.f1, args.f2))
elif model_name == 'FiBiNET':
model = FiBiNET(linear_feature_columns, dnn_feature_columns, task='binary', device=device, seed=seed, dnn_dropout=dropout,
dnn_hidden_units=(args.f1, args.f2))
elif model_name == 'ONN':
model = ONN(linear_feature_columns, dnn_feature_columns, task='binary', device=device, seed=seed, dnn_dropout=dropout,
dnn_hidden_units=(args.f1, args.f2))
elif model_name == 'PNN':
model = PNN(dnn_feature_columns, task='binary', device=device, seed=seed, dnn_dropout=dropout,
dnn_hidden_units=(args.f1, args.f2))
elif model_name == 'AFN':
model = AFN(linear_feature_columns, dnn_feature_columns, task='binary', device=device, seed=seed, dnn_dropout=dropout,
afn_dnn_hidden_units=(args.f1, args.f2))
elif model_name == 'CCPM':
model = CCPM(linear_feature_columns, dnn_feature_columns, task='binary', device=device, seed=seed, dnn_dropout=dropout,
dnn_hidden_units=(args.f1, args.f2))
else:
raise ValueError('Error model name {}'.format(model_name))
model.compile(torch.optim.Adam(model.parameters(), lr=lr), "binary_crossentropy", metrics=['binary_crossentropy'])
logger.info(model)
if args.load_path is None:
# 训练
logger.info('Training')
save_path = 'ckpt/{}_{}_{}_Batch{}_bins{}'.format(exp_id, model_name, sparse_dim, batch_size, dense_bins)
if not add_dense:
save_path += '_only_sparse.ckpt'
else:
save_path += '.ckpt'
es = EarlyStopping(monitor='val_binary_crossentropy', min_delta=0, verbose=1, patience=patience, mode='min')
mdckpt = ModelCheckpoint(filepath=save_path, monitor='val_binary_crossentropy', verbose=1, save_best_only=True, mode='min')
history = model.fit(train_model_input, y.values, batch_size=batch_size, epochs=epochs, verbose=1, validation_split=0.2, callbacks=[es,mdckpt])
# 测试
model = torch.load(save_path)
else:
logger.info('Loading {}'.format(args.load_path))
model = torch.load(args.load_path)
logger.info('Testing')
pred_ans = model.predict(test_model_input, batch_size=batch_size)
logger.info('Pred Test Min {}, Max {}, Mean {}'.format(pred_ans.min(), pred_ans.max(), pred_ans.mean()))
pred_oof = model.predict(train_model_input, batch_size=batch_size)
logger.info('Pred Train Min {}, Max {}, Mean {}'.format(pred_oof.min(), pred_oof.max(), pred_oof.mean()))
logloss = metrics.log_loss(y, pred_oof)
acc = metrics.roc_auc_score(y, pred_oof)
precision = metrics.precision_score(y, [1 if i >= 0.5 else 0 for i in pred_oof])
recall = metrics.recall_score(y, [1 if i >= 0.5 else 0 for i in pred_oof])
f1 = metrics.f1_score(y, [1 if i >= 0.5 else 0 for i in pred_oof])
logger.info(f"Train Data Logloss: {logloss:.4f}, AUC: {acc:.4f}, Precision: {precision:.4f}, Recall: {recall:.4f}, F1 Score: {f1:.4f}")
if local_test:
logger.info('Local Testing')
logger.info('Local test data shape: {}'.format(local_valid_data.shape))
local_valid_data_input = {name: local_valid_data[name] for name in feature_names}
pred_ans_valid = model.predict(local_valid_data_input, batch_size=batch_size)
logger.info('Pred Test Min {}, Max {}, Mean {}'.format(pred_ans_valid.min(), pred_ans_valid.max(), pred_ans_valid.mean()))
logloss = metrics.log_loss(local_valid_data_y, pred_ans_valid)
acc = metrics.roc_auc_score(local_valid_data_y, pred_ans_valid)
precision = metrics.precision_score(local_valid_data_y, [1 if i >= 0.5 else 0 for i in pred_ans_valid])
recall = metrics.recall_score(local_valid_data_y, [1 if i >= 0.5 else 0 for i in pred_ans_valid])
f1 = metrics.f1_score(local_valid_data_y, [1 if i >= 0.5 else 0 for i in pred_ans_valid])
logger.info(f"Local Test Logloss: {logloss:.4f}, AUC: {acc:.4f}, Precision: {precision:.4f}, Recall: {recall:.4f}, F1 Score: {f1:.4f}")
save_path_res = './output/{}_{}_{}_Batch{}_bins{}'.format(exp_id, model_name, sparse_dim, batch_size, dense_bins)
if not add_dense:
save_path_res += '_only_sparse'
logger.info('Save result to {}'.format(save_path_res + '.csv'))
submission = pd.DataFrame()
submission["RowId"] = test_data["f_0"]
submission["is_clicked"] = np.random.random((test_data.shape[0]))
submission["is_installed"] = pred_ans
submission.to_csv(save_path_res + '.csv', index=False, sep='\t')