This repository has been archived by the owner on Sep 13, 2022. It is now read-only.
forked from williamjameshandley/CosmoChord
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclik_units.paramnames
117 lines (117 loc) · 5.98 KB
/
clik_units.paramnames
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
omegabh2 \Omega_{\mathrm{b}} h^2 #physical baryon density
omegach2 \Omega_{\mathrm{c}} h^2 #physical CDM matter density
theta 100\theta_{\mathrm{MC}} #100 times the ratio of sound horizon to angular-diameter distance to (CMB) last-scattering surface (approx)
tau \tau
omegak \Omega_K
mnu \Sigma m_\nu\, [\mathrm{eV}] #sum of physical masses of standard neutrinos
meffsterile m_{\nu,\,\mathrm{sterile}}^{\mathrm{eff}}\, [\mathrm{eV}] #effective mass of sterile neutrino (eV), \approx omeganuh2*94
w w_0 #equation of state parameter for scalar field dark energy today
wa w_a #w_a variation
nnu N_{\mathrm{eff}} #effective number of neutrinos (only clearly defined for massless)
yhe Y_{\mathrm{P}} #Helium mass fraction (not used if bbn_consistency)
alpha1 \alpha #correlated CDM isocurvature
deltazrei \Delta z_{\mathrm{re}} #width of reionization
Alens A_{\mathrm{L}} #lensing potential scaled by sqrt(A_lens)
Alensf A_{\mathrm{L}}^{\mathrm{fid}} #lensing potential scaled by sqrt(A_lens)
fdm \epsilon_0 f_d #CosmoRec dark matter annihilation parameter, 0910.3663
logA \ln(10^{10} A_\mathrm{s})
ns n_\mathrm{s} #beware that pivot scale can change in .ini file
nrun \mathrm{d}n_{\mathrm{s}}/\mathrm{d}\ln k # d n_\mathrm{s} / d\ln k
nrunrun \mathrm{d}^2n_{\mathrm{s}}/\mathrm{d}\ln k^2
r r #ratio of tensor to scalar primordial power at pivot scale 0.05 Mpc^{-1}
nt n_\mathrm{t}
ntrun \mathrm{d}n_\mathrm{t}/\mathrm{d}\ln k
Aphiphi A^{\phi\phi}_{\mathrm{L}} #scaling of lensing potential power (lensed power spectra unchanged)
alpha_SNLS \alpha_{\mathrm{SNLS}}
beta_SNLS \beta_{\mathrm{SNLS}}
asz A_{\mathrm{tSZ}} # SZ template amplitude, as in WMAP
calPlanck y_{\rm cal}
aps100 A^{\mathrm{PS}}_{100} # Point source amplitude at 100 GHz
aps143 A^{\mathrm{PS}}_{143} # Point source amplitude at 143 GHz
aps143217 A^{\mathrm{PS}}_{143\times 217}
aps217 A^{\mathrm{PS}}_{217} # Point source amplitude at 217 GHz
acib143 A^{\mathrm{CIB}}_{143} # CIB amplitude at 143 GHz
acib217 A^{\mathrm{CIB}}_{217} # CIB amplitude at 217 GHz
asz143 A^{\mathrm{tSZ}}_{143} # Thermal SZ amplitude at 143 GHz
psr r^{\mathrm{PS}}_{143\times 217} # 143-217 correlation coefficient of point source residuals
cibr r^{\mathrm{CIB}}_{143\times 217} # 143-217 correlation coefficient of CIB
ncib \gamma^{\mathrm{CIB}} # spectral index of the CIB
cal0 c_{100} # relative power spectrum calibration factor 100/143 to rescale measured power with
cal1 c_{143} # calibration factor 143
cal2 c_{217} # relative calibration factor 217/143 (as for 100)
calEE c_{EE} # calibration factor 143
calTE c_{TE} # relative calibration factor 217/143 (as for 100)
xi \xi^{\mathrm{tSZ}\times\mathrm{CIB}} # TSZ-CIB template amplitude (positive is negative)
aksz A^{\mathrm{kSZ}}
bm_1_1 \beta^1_1
bm_1_2 \beta^1_2
bm_1_3 \beta^1_3
bm_1_4 \beta^1_4
bm_1_5 \beta^1_5
bm_2_1 \beta^2_1
bm_2_2 \beta^2_2
bm_2_3 \beta^2_3
bm_2_4 \beta^2_4
bm_2_5 \beta^2_5
bm_3_1 \beta^3_1
bm_3_2 \beta^3_2
bm_3_3 \beta^3_3
bm_3_4 \beta^3_4
bm_3_5 \beta^3_5
bm_4_1 \beta^4_1
bm_4_2 \beta^4_2
bm_4_3 \beta^4_3
bm_4_4 \beta^4_4
bm_4_5 \beta^4_5
a_ps_act_148 A^{\mathrm{PS,\,ACT}}_{148}
a_ps_act_217 A^{\mathrm{PS,\,ACT}}_{218}
a_ps_spt_95 A^{\mathrm{PS,\,SPT}}_{95}
a_ps_spt_150 A^{\mathrm{PS,\,SPT}}_{150}
a_ps_spt_220 A^{\mathrm{PS,\,SPT}}_{220}
r_ps_spt_95x150 r^{\mathrm{PS}}_{95\times 150}
r_ps_spt_95x220 r^{\mathrm{PS}}_{95\times 220}
r_ps_150x220 r^{\mathrm{PS}}_{150\times 220}
act_dust_s A^{\mathrm{ACTs}}_{\mathrm{dust}}
act_dust_e A^{\mathrm{ACTe}}_{\mathrm{dust}}
cal_acts_148 y^{\mathrm{ACTs}}_{148}
cal_acts_217 y^{\mathrm{ACTs}}_{217}
cal_acte_148 y^{\mathrm{ACTe}}_{148}
cal_acte_217 y^{\mathrm{ACTe}}_{217}
cal_spt_95 y^{\mathrm{SPT}}_{95}
cal_spt_150 y^{\mathrm{SPT}}_{150}
omegal* \Omega_\Lambda
omegam* \Omega_{\mathrm{m}}
sigma8* \sigma_8
rdragh* r_{\mathrm{drag}}h\,[\mathrm{Mpc}]
zrei* z_{\mathrm{re}}
rmsdeflect* \langle d^2\rangle^{1/2}\,[\mathrm{arcmin}]
r10* r_{10} #tensor-scalar C_l amplitude at l=10
H0* H_0\,[{\rm km\,s}^{-1}\,{\rm Mpc}^{-1}] #hubble parameter is H0 km/s/Mpc
r02* r_{0.002} #r at k=0.002
rBB* r_{0.01} #r at k=0.01 (roughly peak of tensor BB)
logAT* {\rm{ln}}(10^{10} A_{\mathrm{t}})
AT* 10^9 A_{\mathrm{t}}
A* 10^9 A_{\mathrm{s}}
omegamh2* \Omega_{\mathrm{m}} h^2 #includes massive neutrinos
omegamh3* \Omega_{\mathrm{m}} h^3 #well determined orthogonal to degeneracy for 6-param model
S8* \sigma_8(\Omega_{\rm m}/0.3)^{0.5}
s8omegamp5* \sigma_8 \Omega_{\mathrm{m}}^{0.5}
s8omegamp25* \sigma_8 \Omega_{\mathrm{m}}^{0.25}
yheused* Y_{\mathrm{P}} #MCMC value or from bbn consistency
YpBBN* Y_{\rm P}^{\rm BBN}
DHBBN* 10^5 {\rm D}/{\rm H}
clamp* 10^9 A_{\mathrm{s}} e^{-2\tau} #parameter determining C_l amplitude
ctlamp* 10^9 A_{\mathrm{t}} e^{-2\tau} #parameter determining L~100 tensor C_l amplitude
ns02* n_{\mathrm{s},0.002}
omeganuh2* \Omega_\nu h^2
age* \mathrm{Age}\,[\mathrm{Gyr}]
zstar* z_\ast
rstar* r_\ast\,[\mathrm{Mpc}]
thetastar* 100\theta_\ast
zdrag* z_{\mathrm{drag}}
rdrag* r_{\mathrm{drag}}\,[\mathrm{Mpc}]
kd* k_{\mathrm{D}}\,[\mathrm{Mpc}^{-1}]
keq* k_{\mathrm{eq}}\,[\mathrm{Mpc}^{-1}]
thetad* 100\theta_{\mathrm{D}}
zeq* z_{\mathrm{eq}}
thetaeq* 100\theta_{\mathrm{eq}}