-
Notifications
You must be signed in to change notification settings - Fork 102
/
projector.py
336 lines (268 loc) · 13.1 KB
/
projector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
'''
# example CUDA_VISIBLE_DEVICES=0 python projector.py -i /root/anpei/code/styleGAN3/dataset/back_project_test/ -o /root/anpei/code/styleGAN3/result/back_project-w --ckpt /root/anpei/code/styleGAN3/checkpoint/tf-1024-conv-seg-less5-7/279999.pt --step 1000 --w_plus
'''
import argparse
import math
import os
import torch
from torch import optim
from torch.nn import functional as F
from torchvision import transforms, utils
from PIL import Image
from tqdm import tqdm
import lpips, cv2
from modules.model_seg_input2 import Generator2
from modules.BiSeNet import BiSeNet
import numpy as np
remap_list = torch.tensor([0,1,2,2,3,3,4,5,6,7,8,9,9,10,11,12,13,14,15,16]).float()
def id_remap(seg):
#['background'0,'skin'1, 'l_brow'2, 'r_brow'3, 'l_eye'4, 'r_eye'5,'r_nose'6, 'l_nose'7, 'mouth'8, 'u_lip'9,
# 'l_lip'10, 'l_ear'11, 'r_ear'12, 'ear_r'13, 'eye_g'14, 'neck'15, 'neck_l'16, 'cloth'17, 'hair'18, 'hat'19]
return remap_list[seg.long()]
transform_seg = transforms.Compose(
[
# transforms.RandomAffine(20,translate=(0.2,0.2)),
transforms.ToTensor(),
]
)
def vis_condition_img(img):
part_colors = [[0, 0, 0], [127, 212, 255], [255, 255, 127], [255, 255, 170],#'skin',1 'eye_brow'2, 'eye'3
[240, 157, 240], [255, 212, 255], #'r_nose'4, 'l_nose'5
[31, 162, 230], [127, 255, 255], [127, 255, 255],#'mouth'6, 'u_lip'7,'l_lip'8
[0, 255, 85], [0, 255, 170], #'ear'9 'ear_r'10
[255, 255, 170],
[127, 170, 255], [85, 0, 255], [255, 170, 127], #'neck'11, 'neck_l'12, 'cloth'13
[212, 127, 255], [0, 170, 255],#, 'hair'14, 'hat'15
[255, 255, 0], [255, 255, 85], [255, 255, 170],
[255, 0, 255], [255, 85, 255], [255, 170, 255],
[0, 255, 255], [85, 255, 255], [170, 255, 255], [100, 150, 200]]
H,W = img.shape
condition_img_color = np.zeros((H,W,3))
num_of_class = int(np.max(img))
for pi in range(1, num_of_class + 1):
index = np.where(img == pi)
condition_img_color[index[0], index[1],:] = part_colors[pi]
return condition_img_color
def noise_regularize(noises):
loss = 0
for noise in noises:
size = noise.shape[2]
while True:
loss = loss + (noise * torch.roll(noise, shifts=1, dims=3)).mean().pow(2) \
+ (noise * torch.roll(noise, shifts=1, dims=2)).mean().pow(2)
if size <= 8:
break
noise = noise.reshape([1, 1, size // 2, 2, size // 2, 2])
noise = noise.mean([3, 5])
size //= 2
return loss
def noise_normalize_(noises):
for noise in noises:
mean = noise.mean()
std = noise.std()
noise.data.add_(-mean).div_(std)
def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05):
lr_ramp = min(1, (1 - t) / rampdown)
lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi)
lr_ramp = lr_ramp * min(1, t / rampup)
return initial_lr * lr_ramp
def latent_noise(latent, strength):
noise = torch.randn_like(latent) * strength
return latent + noise
def make_image(tensor):
return tensor.detach().clamp_(min=-1, max=1).add(1).div_(2).mul(255) \
.type(torch.uint8).permute(0, 2, 3, 1).to('cpu').numpy()
def absoluteFilePaths(directory):
path = []
files = sorted(os.listdir(directory))
for item in files:
if item.endswith('g'):
path.append(os.path.join(os.path.abspath(directory), item))
return path
if __name__ == '__main__':
device = 'cuda'
parser = argparse.ArgumentParser()
parser.add_argument('--ckpt', type=str, required=True)
parser.add_argument('--resolution', type=int, default=1024)
parser.add_argument('--lr_rampup', type=float, default=0.05)
parser.add_argument('--lr_rampdown', type=float, default=0.25)
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--noise', type=float, default=0.05)
parser.add_argument('--noise_ramp', type=float, default=0.75)
parser.add_argument('--step', type=int, default=1000)
parser.add_argument('--noise_regularize', type=float, default=1e5)
parser.add_argument('--mse', type=float, default=0)
parser.add_argument('--w_plus', action='store_true')
parser.add_argument('--m_plus', action='store_true')
parser.add_argument('--batch', type=int,default=1)
parser.add_argument('-i', '--files', type=str)
parser.add_argument('-o', '--output', type=str)
args = parser.parse_args()
args.latent = 512
args.n_mlp = 8
args.channel_multiplier = 2
args.condition_dim = 0
args.condition_path = args.files
n_mean_latent = 10000
resize = min(args.resolution, 1024)
transform = transforms.Compose([transforms.Resize(resize),
transforms.CenterCrop(resize),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5],
[0.5, 0.5, 0.5])])
imgs, segmaps, files = [], [],[]
if os.path.isdir(args.files):
files = absoluteFilePaths(args.files)
else:
files = [args.files]
# print(args.files)
# segmentaion
segNet = None
n_classes = 20
segNet = BiSeNet(n_classes=n_classes)
checkpoint = torch.load('modules/segNet-20Class.pth')
segNet.load_state_dict(checkpoint)
segNet = segNet.to(device)
segNet.eval()
# generator
g_ema = Generator2(args).to(device)
g_ema.eval()
g_ema.load_state_dict(torch.load(args.ckpt)['g_ema'])
percept = lpips.PerceptualLoss(model='net-lin', net='vgg', use_gpu=device.startswith('cuda'))
with torch.no_grad():
noise_sample = torch.randn(n_mean_latent, 512, device=device)
latent_out = g_ema.style(noise_sample)
latent_mean = latent_out.mean(0)
latent_std = ((latent_out - latent_mean).pow(2).sum() / n_mean_latent) ** 0.5
# pre calc std and bias
input_files = []
for i,imgfile in enumerate(files):
if not imgfile.endswith('g'):
continue
imgfile_path = os.path.abspath(imgfile)
img = transform(Image.open(imgfile_path).convert('RGB'))
imgs.append(img)
input_files.append(imgfile_path)
if os.path.exists(imgfile[:-4]+f'_seg.png'):
segmaps.append(torch.from_numpy(np.array(Image.open(imgfile[:-4]+f'_seg.png'))))
if len(imgs)==args.batch or i==len(args.files)-1:
imgs = torch.stack(imgs, dim=0).cuda()
if len(segmaps):
input_seg = id_remap(torch.stack(segmaps)).cuda()
else:
with torch.no_grad():
input_size = 512
input_seg = torch.nn.functional.interpolate(imgs, size=(512, 512),
mode='bilinear', align_corners=True)
input_seg = segNet(input_seg)[0].detach()
input_seg = torch.nn.functional.interpolate(input_seg, size=(input_size, input_size),
mode='bilinear', align_corners=True)
input_seg = id_remap(input_seg.argmax(1, keepdim=True)).cuda()
for j, item in enumerate(input_seg):
img = item[0].cpu().numpy().astype('uint8')
cv2.imwrite(os.path.join(args.output, os.path.basename(imgfile)[:-4]+'_seg.png'),img)
n_classes = 17
latent_in = latent_mean.detach().clone()[None, None].repeat(args.batch,1,1)
if args.w_plus:
latent_in = latent_in.repeat(1, g_ema.n_latent, 1)
if args.m_plus:
class_probability = torch.randn(n_classes, device=device, requires_grad=True)
latent_in = latent_in.repeat(2, 1, 1)
latent_in.requires_grad = True
noises = g_ema.make_noise()
for noise in noises:
noise.requires_grad = True
parameters = [latent_in] + noises
if args.m_plus:
parameters += [class_probability]
optimizer = optim.Adam(parameters, lr=args.lr)
pbar = tqdm(range(args.step))
latent_path = []
for k in pbar:
t = k / args.step
lr = get_lr(t, args.lr)
optimizer.param_groups[0]['lr'] = lr
noise_strength = latent_std * args.noise * max(0, 1 - t / args.noise_ramp) ** 2
latent_n = latent_noise(latent_in, noise_strength.item())
# if not args.w_plus:
# latent_n = [latent_n]
style_mask = None
if args.m_plus:
style_mask = class_probability[input_seg.long()]
style_mask = torch.cat((style_mask,1.0-style_mask),1)
img_gen, _, _, _ = g_ema(latent_n, condition_img=input_seg, noise=noises, input_is_latent=args.w_plus, style_mask=style_mask)
batch, channel, height, width = img_gen.shape
# if height > 256:
# factor = height // 256
#
# img_gen = img_gen.reshape(
# batch, channel, height // factor, factor, width // factor, factor
# )
# img_gen = img_gen.mean([3, 5])
p_loss = percept(img_gen, imgs).sum()
n_loss = noise_regularize(noises)
mse_loss = F.mse_loss(img_gen, imgs)
loss = p_loss + args.noise_regularize * n_loss + args.mse * mse_loss
# loss = p_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
noise_normalize_(noises)
# print(class_probability)
# if (k + 1) % 100 == 0:
# latent_path.append(latent_in.detach().clone())
pbar.set_description((f'perceptual: {p_loss.item():.4f}; noise regularize: {n_loss.item():.4f};'
f' mse: {mse_loss.item():.4f}; lr: {lr:.4f}'))
with torch.no_grad():
img_gen, _, _, _ = g_ema(latent_n, condition_img=input_seg, noise=noises, input_is_latent=args.w_plus)
if not os.path.exists(args.output):
os.mkdir(args.output)
img_ar = make_image(img_gen)
for j, input_name in enumerate(input_files):
img_name = os.path.join(args.output, os.path.basename(input_name))
pil_img = Image.fromarray(img_ar[j])
pil_img.save(img_name)
result_file = {'noises': noises, 'latent_n': latent_n[j], 'style_mask':style_mask}#, 'class_probability':class_probability
torch.save(result_file, img_name[:-4]+'.npy')
imgs,segmaps,input_files = [],[],[]
# filename = os.path.join(args.output, 'reProject.pt')
# torch.save(result_file, filename)
# stylizing the video
# folder = f'{args.files}/{os.path.basename(imgfile)[:-4]}/'
# save_root = f'{args.output}/{os.path.basename(imgfile)[:-4]}/'
# os.makedirs(save_root, exist_ok=True)
# List = sorted(os.listdir(folder))
# for j, item in enumerate(List):
# img_path = os.path.join(folder, item)
# save_path = os.path.join(save_root, item)
#
# seg_label = Image.open(img_path)
# seg_label = transform_seg(seg_label).unsqueeze(0)
#
# seg_label = id_remap(F.interpolate(seg_label, size=(256,256), mode='nearest') * 255).to(device)
#
# img_gen, _, _, _ = g_ema(latent_n, condition_img=seg_label, noise=noises, input_is_latent=args.w_plus,style_mask=style_mask)
#
# img_gen = torch.clamp(img_gen, -1, 1).detach().cpu()
# utils.save_image(
# img_gen,
# save_path,
# nrow=1,
# normalize=True,
# range=(-1, 1),
# padding = 0
# )
# adjust regional styles
# input_seg_long = torch.squeeze(input_seg.long())
# latent_n = torch.cat((latent_mean[None,None].repeat(1,18,1),latent_n),dim=0)
# style_mask = torch.zeros_like(input_seg_long)
# style_mask = torch.stack((style_mask, 1.0 - style_mask), 0).float()
# for s in range(10):
# style_mask[0,input_seg_long==15],style_mask[1,input_seg_long==15] = s/9.0, 1.0-s/9.0
# style_mask[0, input_seg_long == 14], style_mask[1, input_seg_long == 14] = s / 9.0, 1.0 - s / 9.0
# img_gen, _, _, _ = g_ema(latent_n, condition_img=input_seg, noise=noises, input_is_latent=args.w_plus, style_mask=style_mask[None])
#
# img_ar = make_image(img_gen)
# img_name = f'{args.output}/{os.path.basename(input_name)[:-4]}_{s:02d}.png'
# pil_img = Image.fromarray(img_ar[j])
# pil_img.save(img_name)