Skip to content

Latest commit

 

History

History
46 lines (38 loc) · 3.39 KB

README.md

File metadata and controls

46 lines (38 loc) · 3.39 KB

Heterosked reg models

Project describtion and brief results

This is a result of a class project for Math 170B (Spring 2018) in UCLA. The goal of the project was to get hands-on experience with fititng heteroskedastic data and analyzing the peroformance of various regresson models on it.

In the course of the project we were able to conclude that theoretically the best tool for fitting data with heteroskedasticity is Generalized Least Square (GLSE) regression. However, in practice, for the datasets we had, ordinary Least Square Regression (LSE) had a better performance (see metrics below)

  • Full Report with the explanations of out work and conclusions is avaliable here
  • Final estimates of the a and b parameters of y = a + bx + e model are here
  • Below you can find the most visually attractive results of our work, namely two tables with the metrics of model performance and 5 graphs with visualized data and model predictions (only more relevant models are included, feel free to generate more plots by slightly modifying the code

R^2 table

file/ reg type 1 2 3 4 5
LSE 0.1639863122 0.3980894410 0.10319995 0.0275947359 0.280575792
GLSEI 0.1166125126 0.09153352884 -0.01553730364 -0.1297663105 -0.1286472674
GLSEII 0.04640626767 0.06940218455 -0.04114628643 -0.1472103778 0.280575792
WLSE 0.1403769574 0.1834023549 0.01624763418 -0.01781630477 -0.04060542850
LASSO 0.1639739902 0.3980894371 0.1031952438 0.02759473565 0.2805757898
RIDGE 0.1638634355 0.3980877000 0.1031988620 0.02670308780 0.2805165134
HUBER 0.1573759139 0.3937864654 0.08307870806 0.006033289644 0.2581856714

RMSE table

file/ reg type 1 2 3 4 5
lSE 5.2949701007221 15.4237819098164 17.5180183493125 5.07326984135883 11.1023251073797
GLSEI 5.4429261248202 18.9486967923493 18.6416825140806 5.468379190303 13.9059458626989
GLSEII 5.6550768614652 19.178114585660 18.875264406678 5.5104345123976 11.1023251073797
WLSE 5.3692155871704 17.9650717619072 18.347633724117 5.1903783156856 13.3525576166922
LASSO 5.2950091220463 15.423781960821 17.5180643853534 5.0732698420786 11.1023251290293
HUBER 5.2953592119916 15.4238042169278 17.518029046899 5.0755952787186 11.1027825033413
RIDGE 5.3158626672572 15.4788149751225 17.71345162456 5.1292070631290 11.2737662497784

Model predictions

File 1

pred_plot_1

File 2

pred_plot_2

File 3

pred_plot_3

File 4

pred_plot_4

File 5

pred_plot_5