diff --git a/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/analysis/interpolation/ClampedSplineInterpolator.java b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/analysis/interpolation/ClampedSplineInterpolator.java new file mode 100644 index 000000000..3474b6609 --- /dev/null +++ b/commons-math-legacy/src/main/java/org/apache/commons/math4/legacy/analysis/interpolation/ClampedSplineInterpolator.java @@ -0,0 +1,161 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math4.legacy.analysis.interpolation; + +import org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction; +import org.apache.commons.math4.legacy.analysis.polynomials.PolynomialSplineFunction; +import org.apache.commons.math4.legacy.core.MathArrays; +import org.apache.commons.math4.legacy.exception.DimensionMismatchException; +import org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException; +import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException; +import org.apache.commons.math4.legacy.exception.util.LocalizedFormats; + +/** + * Clamped cubic spline interpolator. + * The interpolating function consists in cubic polynomial functions defined over the + * subintervals determined by the "knot points". + * + * The interpolating polynomials satisfy: + *
    + *
  1. The value of the interpolating function at each of the input {@code x} values + * equals the corresponding input {@code y} value.
  2. + *
  3. Adjacent polynomials are equal through two derivatives at the knot points + * (i.e., adjacent polynomials "match up" at the knot points, as do their first and + * second derivatives).
  4. + *
  5. The clamped boundary condition, i.e. the interpolating function takes "a + * specific direction" at both its start point and its end point by providing the + * desired first derivative values (slopes) as function parameters to + * {@link #interpolate(double[], double[], double, double)}.
  6. + *
+ * + * The algorithm is implemented as described in + *
+ * R.L. Burden, J.D. Faires, + * Numerical Analysis, 9th Ed., 2010, Cengage Learning, ISBN 0-538-73351-9, pp 153-156. + *
+ * + */ +public class ClampedSplineInterpolator implements UnivariateInterpolator { + /** + * + * The first derivatives evaluated at the first and last knot points are + * approximated from a natural/unclamped spline that passes through the same + * set of points. + * + * @param x Arguments for the interpolation points. + * @param y Values for the interpolation points. + * @return the interpolating function. + * @throws DimensionMismatchException if {@code x} and {@code y} have different sizes. + * @throws NumberIsTooSmallException if the size of {@code x < 3}. + * @throws NonMonotonicSequenceException if {@code x} is not sorted in strict increasing order. + */ + @Override + public PolynomialSplineFunction interpolate(final double[] x, + final double[] y) { + final SplineInterpolator spliner = new SplineInterpolator(); + final PolynomialSplineFunction spline = spliner.interpolate(x, y); + final PolynomialSplineFunction derivativeSpline = spline.polynomialSplineDerivative(); + final double fpStart = derivativeSpline.value(x[0]); + final double fpEnd = derivativeSpline.value(x[x.length - 1]); + + return this.interpolate(x, y, fpStart, fpEnd); + } + + /** + * Computes an interpolating function for the data set with defined + * boundary conditions. + * + * @param x Arguments for the interpolation points. + * @param y Values for the interpolation points. + * @param fpStart First derivative at the starting point of the returned + * spline function (starting slope). + * @param fpEnd First derivative at the ending point of the returned + * spline function (ending slope). + * @return the interpolating function. + * @throws DimensionMismatchException if {@code x} and {@code y} have different sizes. + * @throws NumberIsTooSmallException if the size of {@code x < 3}. + * @throws NonMonotonicSequenceException if {@code x} is not sorted in strict increasing order. + */ + public PolynomialSplineFunction interpolate(final double[] x, + final double[] y, + final double fpStart, + final double fpEnd) { + if (x.length != y.length) { + throw new DimensionMismatchException(x.length, y.length); + } + + if (x.length < 3) { + throw new NumberIsTooSmallException(LocalizedFormats.NUMBER_OF_POINTS, + x.length, 3, true); + } + + // Number of intervals. The number of data points is n + 1. + final int n = x.length - 1; + + MathArrays.checkOrder(x); + + // Differences between knot points. + final double[] h = new double[n]; + for (int i = 0; i < n; i++) { + h[i] = x[i + 1] - x[i]; + } + + final double[] mu = new double[n]; + final double[] z = new double[n + 1]; + + final double alpha0 = 3d * (y[1] - y[0]) / h[0] - 3d * fpStart; + final double alphaN = 3d * fpEnd - 3d * (y[n] - y[n - 1]) / h[n - 1]; + + mu[0] = 0.5d; + final double ell0 = 2d * h[0]; + z[0] = alpha0 / ell0; + + for (int i = 1; i < n; i++) { + final double alpha = (3d / h[i]) * (y[i + 1] - y[i]) - (3d / h[i - 1]) * (y[i] - y[i - 1]); + final double ell = 2d * (x[i + 1] - x[i - 1]) - h[i - 1] * mu[i - 1]; + mu[i] = h[i] / ell; + z[i] = (alpha - h[i - 1] * z[i - 1]) / ell; + } + + // Cubic spline coefficients. + final double[] b = new double[n]; // Linear. + final double[] c = new double[n + 1]; // Quadratic. + final double[] d = new double[n]; // Cubic. + + final double ellN = h[n - 1] * (2d - mu[n - 1]); + z[n] = (alphaN - h[n - 1] * z[n - 1]) / ellN; + c[n] = z[n]; + + for (int j = n - 1; j >= 0; j--) { + c[j] = z[j] - mu[j] * c[j + 1]; + b[j] = ((y[j + 1] - y[j]) / h[j]) - h[j] * (c[j + 1] + 2d * c[j]) / 3d; + d[j] = (c[j + 1] - c[j]) / (3d * h[j]); + } + + final PolynomialFunction[] polynomials = new PolynomialFunction[n]; + final double[] coefficients = new double[4]; + for (int i = 0; i < n; i++) { + coefficients[0] = y[i]; + coefficients[1] = b[i]; + coefficients[2] = c[i]; + coefficients[3] = d[i]; + polynomials[i] = new PolynomialFunction(coefficients); + } + + return new PolynomialSplineFunction(x, polynomials); + } +} diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/ClampedSplineInterpolatorTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/ClampedSplineInterpolatorTest.java new file mode 100644 index 000000000..ddca38baa --- /dev/null +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/ClampedSplineInterpolatorTest.java @@ -0,0 +1,176 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.commons.math4.legacy.analysis.interpolation; + +import org.apache.commons.math4.legacy.TestUtils; +import org.apache.commons.math4.legacy.analysis.UnivariateFunction; +import org.apache.commons.math4.legacy.analysis.integration.SimpsonIntegrator; +import org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction; +import org.apache.commons.math4.legacy.analysis.polynomials.PolynomialSplineFunction; +import org.apache.commons.math4.legacy.exception.DimensionMismatchException; +import org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException; +import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException; +import org.junit.Assert; +import org.junit.Test; + +/** + * Test the ClampedSplineInterpolator. + */ +public class ClampedSplineInterpolatorTest { + /** Error tolerance for spline interpolator value at knot points. */ + private static final double KNOT_TOL = 1e-14; + /** Error tolerance for interpolating polynomial coefficients. */ + private static final double COEF_TOL = 1e-14; + + @Test + public void testInterpolateLinearDegenerateTwoSegment() { + final double[] x = {0, 0.5, 1}; + final double[] y = {1, Math.exp(0.5), Math.exp(1)}; + final double fpo = 1; + final double fpn = Math.exp(1); + final ClampedSplineInterpolator i = new ClampedSplineInterpolator(); + final PolynomialSplineFunction f = i.interpolate(x, y, fpo, fpn); + verifyInterpolation(f, x, y); + verifyConsistency(f, x); + + // Verify coefficients using analytical values + final PolynomialFunction[] polynomials = f.getPolynomials(); + + final double[] target0 = {1, 1, 0.4889506772539256, 0.21186881109317435}; + final double[] target1 = {1.6487212707001282, 1.6478522855738063, 0.8067538938936871, 0.35156753198873575}; + TestUtils.assertEquals(polynomials[0].getCoefficients(), target0, COEF_TOL); + TestUtils.assertEquals(polynomials[1].getCoefficients(), target1, COEF_TOL); + } + + @Test + public void testInterpolateLinearDegenerateThreeSegment() { + final double[] x = {0, 1, 2, 3}; + final double[] y = {1, Math.exp(1), Math.exp(2), Math.exp(3)}; + final double fpo = 1; + final double fpn = Math.exp(3); + final ClampedSplineInterpolator i = new ClampedSplineInterpolator(); + final PolynomialSplineFunction f = i.interpolate(x, y, fpo, fpn); + verifyInterpolation(f, x, y); + verifyConsistency(f, x); + + // Verify coefficients using analytical values + final PolynomialFunction[] polynomials = f.getPolynomials(); + + final double[] target0 = {1, 0.9999999999999999, 0.4446824969658283, 0.27359933149321697}; + final double[] target1 = {2.718281828459045, 2.710162988411307, 1.2654804914454791, 0.6951307906148195}; + final double[] target2 = {7.38905609893065, 7.326516343146723, 3.3508728632899376, 2.019091617820356}; + TestUtils.assertEquals(polynomials[0].getCoefficients(), target0, COEF_TOL); + TestUtils.assertEquals(polynomials[1].getCoefficients(), target1, COEF_TOL); + TestUtils.assertEquals(polynomials[2].getCoefficients(), target2, COEF_TOL); + } + + @Test(expected=DimensionMismatchException.class) + public void testArrayLengthMismatch() { + // Data set arrays of different size. + new ClampedSplineInterpolator().interpolate(new double[] {1, 2, 3, 4}, + new double[] {2, 3, 5}, + 2, 1); + } + @Test(expected=NonMonotonicSequenceException.class) + public void testUnsortedArray() { + // Knot values not sorted. + new ClampedSplineInterpolator().interpolate(new double[] {1, 3, 2 }, + new double[] {2, 3, 5}, + 2, 1); + } + @Test(expected=NumberIsTooSmallException.class) + public void testInsufficientData() { + // Not enough data to interpolate. + new ClampedSplineInterpolator().interpolate(new double[] {1, 2 }, + new double[] {2, 3}, + 2, 1); + } + + /** + * Verifies that a clamped spline without specified boundary conditions behaves similar to a natural + * ("unclamped") spline. + * + *

+ * Using the exponential function ex over the interval [0, 3], the test + * evaluates: + *

    + *
  1. The integral of a clamped spline with specified boundary conditions (endpoint slopes/derivatives).
  2. + *
  3. The integral of a clamped spline without specified boundary conditions.
  4. + *
  5. The integral of a natural spline (without boundary conditions by default).
  6. + *
+ * + * These integrals are compared against the direct integral of the function ex over the same + * interval.

+ * + *

+ * This test is based on "Example 4" in R.L. Burden, J.D. Faires, + * Numerical Analysis, 9th Ed., 2010, Cengage Learning, ISBN 0-538-73351-9, pp 156-157. + *

+ */ + @Test + public void testIntegral() { + final double[] x = {0, 1, 2, 3}; + final double[] y = {1, Math.exp(1), Math.exp(2), Math.exp(3)}; + final double fpo = 1; + final double fpn = Math.exp(3); + + final ClampedSplineInterpolator clampedSplineInterpolator = new ClampedSplineInterpolator(); + final PolynomialSplineFunction clampedSpline = clampedSplineInterpolator.interpolate(x, y, fpo, fpn); + final PolynomialSplineFunction clampedSplineAsNaturalSpline = clampedSplineInterpolator.interpolate(x, y); + + final SplineInterpolator naturalSplineInterpolator = new SplineInterpolator(); + final PolynomialSplineFunction naturalSpline = naturalSplineInterpolator.interpolate(x, y); + + final SimpsonIntegrator integrator = new SimpsonIntegrator(); + + final double clampedSplineIntegral = integrator.integrate(1000, clampedSpline, 0, 3); + final double clampedSplineAsNaturalSplineIntegral = integrator.integrate(1000, clampedSplineAsNaturalSpline, 0, 3); + final double naturalSplineIntegral = integrator.integrate(1000, naturalSpline, 0, 3); + final double exponentialFunctionIntegral = integrator.integrate(1000, (arg) -> Math.exp(arg), 0, 3); + + Assert.assertEquals(Math.abs(clampedSplineAsNaturalSplineIntegral - naturalSplineIntegral), 0, 0); + Assert.assertEquals(Math.abs(exponentialFunctionIntegral - clampedSplineIntegral), 0.02589, 0.1); + Assert.assertEquals(Math.abs(exponentialFunctionIntegral - naturalSplineIntegral), 0.46675, 0.1); + } + + /** + * Verifies that f(x[i]) = y[i] for i = 0, ..., n-1 (where n is common length). + */ + private void verifyInterpolation(PolynomialSplineFunction f, + double[] x, double[] y) { + for (int i = 0; i < x.length; i++) { + Assert.assertEquals(f.value(x[i]), y[i], KNOT_TOL); + } + } + + /** + * Verifies that interpolating polynomials satisfy consistency requirement: adjacent polynomials must agree through + * two derivatives at knot points. + */ + private void verifyConsistency(PolynomialSplineFunction f, + double[] x) { + PolynomialFunction polynomials[] = f.getPolynomials(); + for (int i = 1; i < x.length - 2; i++) { + // evaluate polynomials and derivatives at x[i + 1] + Assert.assertEquals(polynomials[i].value(x[i + 1] - x[i]), polynomials[i + 1].value(0), 0.1); + Assert.assertEquals(polynomials[i].polynomialDerivative().value(x[i + 1] - x[i]), + polynomials[i + 1].polynomialDerivative().value(0), 0.5); + Assert.assertEquals(polynomials[i].polynomialDerivative().polynomialDerivative().value(x[i + 1] - x[i]), + polynomials[i + 1].polynomialDerivative().polynomialDerivative().value(0), 0.5); + } + } +} diff --git a/pom.xml b/pom.xml index eb072c909..75778378c 100644 --- a/pom.xml +++ b/pom.xml @@ -1054,6 +1054,9 @@ This is avoided by creating an empty directory when svn is not available. Samy Badjoudj + + Michael Scholz + diff --git a/src/changes/changes.xml b/src/changes/changes.xml index 8499b5f52..bdf16fe5e 100644 --- a/src/changes/changes.xml +++ b/src/changes/changes.xml @@ -96,6 +96,9 @@ Caveat: to support the whole codebase (it was one of the main reasons for creating more focused components). "> + + New feature: "ClampedSplineInterpolator". + Javadoc: Fix broken link.