-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPolynomial_Regression.R
79 lines (39 loc) · 1.57 KB
/
Polynomial_Regression.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# POLYNOMIAL REGRESSION
#IMPORT THE DATASET
dataset = read.csv('Position_Salaries.csv')
dataset = dataset[2:3]
#FITTING THE LINEAR REGRESSION TO THE DATASET
lin_reg = lm(formula = Salary ~ ., data = dataset)
summary(lin_reg)
#FITTING THE POLYNOMIAL REGRESSION TO THE DATASET
dataset$Level2 = dataset$Level^2
dataset$Level3 = dataset$Level^3
dataset$Level4 = dataset$Level^4
poly_reg = lm(formula = Salary ~ ., data = dataset)
summary(poly_reg)
#VISUALISING THE LINEAR REGRESSION
library(ggplot2)
ggplot() +
geom_point(aes(x= dataset$Level, y= dataset$Salary),
colour = 'red') +
geom_line(aes(x=dataset$Level, y = predict(lin_reg, newdata = dataset)),
colour = 'blue') +
ggtitle('TRUTH OR BLUFF(LINEAR REGRESSION)') +
xlab('POSITION LEVELS')+
ylab('SALARY')
#VISUALISING THE LINEAR REGRESSION
ggplot() +
geom_point(aes(x= dataset$Level, y= dataset$Salary),
colour = 'red') +
geom_line(aes(x=dataset$Level, y = predict(poly_reg, newdata = dataset)),
colour = 'blue') +
ggtitle('TRUTH OR BLUFF(POLYNOMIAL REGRESSION)') +
xlab('POSITION LEVELS')+
ylab('SALARY')
#PREDICTING A NEW RESULT WITH LINEAR REGRESSION
y_pred = predict(lin_reg, data.frame(Level=6.5))
#PREDICTING A NEW RESULT WITH POLYNOMIAL REGRESSION
y_pred = predict(poly_reg, data.frame(Level=6.5,
Level2=6.5^2,
Level3=6.5^3,
Level4=6.5^4))