-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMultiple_Linear_Regressipon.R
73 lines (31 loc) · 1.21 KB
/
Multiple_Linear_Regressipon.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#MULTIPLE LINEAR REGRESSION
#IMPORT THE DATASET
dataset = read.csv('50_Startups.csv')
#ENCODING CATEGORICAL VARIABLE
dataset$State = factor(dataset$State,
levels = c('New York','California','Florida'),
labels = c(1,2,3))
#SPLITING THE TRAINING SET AND THE TEST SET
library(caTools)
set.seed(123)
split = sample.split(dataset$Profit, SplitRatio = 2/3 )
training_set = subset(dataset, split == TRUE)
test_set = subset(dataset, split == FALSE)
#FITTING THE MULTIPLE LINEAR REGRESSION
regressor = lm(formula = Profit ~ ., data = training_set)
summary(regressor)
#PREDICTING THE TEST SET
y_predict = predict(regressor, newdata = test_set)
#BULTING THE OPTIMAL MODEL USING BACKWARD ELIMINATION
regressor = lm(formula = Profit ~ R.D.Spend + Administration + Marketing.Spend + State,
data = training_set)
summary(regressor)
# 1 pART
regressor = lm(formula = Profit ~ R.D.Spend + Marketing.Spend,
data = training_set)
summary(regressor)
#PAET 2
regressor = lm(formula = Profit ~ R.D.Spend,
data = training_set)
summary(regressor)
#PART 3