-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathmodel.py
38 lines (32 loc) · 1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import sys
import torch as th
import torchvision.models as models
from videocnn.models import resnext
from torch import nn
class GlobalAvgPool(nn.Module):
def __init__(self):
super(GlobalAvgPool, self).__init__()
def forward(self, x):
return th.mean(x, dim=[-2, -1])
def get_model(args):
assert args.type in ['2d', '3d']
if args.type == '2d':
print('Loading 2D-ResNet-152 ...')
model = models.resnet152(pretrained=True)
model = nn.Sequential(*list(model.children())[:-2], GlobalAvgPool())
model = model.cuda()
else:
print('Loading 3D-ResneXt-101 ...')
model = resnext.resnet101(
num_classes=400,
shortcut_type='B',
cardinality=32,
sample_size=112,
sample_duration=16,
last_fc=False)
model = model.cuda()
model_data = th.load(args.resnext101_model_path)
model.load_state_dict(model_data)
model.eval()
print('loaded')
return model