diff --git a/README.md b/README.md index af06b3a..2ca91dd 100644 --- a/README.md +++ b/README.md @@ -35,7 +35,7 @@ sudo apt update sudo apt install -y --no-install-recommends ccache curl device-tree-compiler dfu-util file \ g++-multilib gcc gcc-multilib git jq libmagic1 libsdl2-dev make ninja-build \ python3-dev python3-pip python3-setuptools python3-tk python3-wheel python3-venv \ - wget xxd xz-utils + mono-complete wget xxd xz-utils ``` ### Cloning the project and preparing the environment @@ -102,6 +102,16 @@ pip install --upgrade pip pip install "kenning[tvm,tensorflow,reports,renode] @ git+https://github.com/antmicro/kenning.git" ``` +The [pyrenode3](https://github.com/antmicro/pyrenode3/) module requires installing Renode to work. +The easiest way is to use the latest Renode package and store its location in `PYRENODE_PKG`: + +```bash +wget https://builds.renode.io/renode-latest.pkg.tar.xz +export PYRENODE_PKG=`pwd`/renode-latest.pkg.tar.xz +``` + +For other configuration options check [pyrenode3 README.md](https://github.com/antmicro/pyrenode3/blob/main/README.md). + ## Evaluating the model in Kenning [Kenning](https://github.com/antmicro/kenning) provides: @@ -232,8 +242,6 @@ The Kenning inference library present in this repository can be also used in act The application present in `demo_app` demonstrates how to use Kenning Zephyr Runtime in actual, simple use case, where we take a model recognizing gestures (`wing`, `ring`, `slope` and `negative`, trained with Magic Wand dataset) and compile it with picked runtime. It goes through delivered inputs, runs inference and prints the output. -This demo requires [pyrenode3](https://github.com/antmicro/pyrenode3/) - please follow installation instructions in its README. - With the build environment configured as described in the [Cloning the project and preparing the environment](#cloning-the-project-and-preparing-the-environment), you can build the `demo_app` as follows: * using the microTVM runtime: