-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathuc8151.py
874 lines (788 loc) · 34.9 KB
/
uc8151.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
# MicroPython driver for the UC8151 /IL0373 e-paper display.
# This is the e-paper type used in the Badger 2040.
#
# Copyright(C) 2024 Salvatore Sanfilippo <[email protected]>
# MIT license.
from machine import Pin
import time, framebuf
### Commands list.
# Commands are executed putting the DC line in command mode
# and sending the command as first byte, followed if needed by
# the data arguments (but with DC in data mode).
CMD_PSR = const(0x00)
CMD_PWR = const(0x01)
CMD_POF = const(0x02)
CMD_PFS = const(0x03)
CMD_PON = const(0x04)
CMD_PMES = const(0x05)
CMD_BTST = const(0x06)
CMD_DSLP = const(0x07)
CMD_DTM1 = const(0x10)
CMD_DSP = const(0x11)
CMD_DRF = const(0x12)
CMD_DTM2 = const(0x13)
CMD_LUT_VCOM = const(0x20)
CMD_LUT_WW = const(0x21)
CMD_LUT_BW = const(0x22)
CMD_LUT_WB = const(0x23)
CMD_LUT_BB = const(0x24)
CMD_PLL = const(0x30)
CMD_TSC = const(0x40)
CMD_TSE = const(0x41)
CMD_TSR = const(0x43)
CMD_TSW = const(0x42)
CMD_CDI = const(0x50)
CMD_LPD = const(0x51)
CMD_TCON = const(0x60)
CMD_TRES = const(0x61)
CMD_REV = const(0x70)
CMD_FLG = const(0x71)
CMD_AMV = const(0x80)
CMD_VV = const(0x81)
CMD_VDCS = const(0x82)
CMD_PTL = const(0x90)
CMD_PTIN = const(0x91)
CMD_PTOU = const(0x92)
CMD_PGM = const(0xa0)
CMD_APG = const(0xa1)
CMD_ROTP = const(0xa2)
CMD_CCSET = const(0xe0)
CMD_PWS = const(0xe3)
CMD_TSSET = const(0xe5)
### Register values
# PSR
RES_96x230 = const(0b00000000)
RES_96x252 = const(0b01000000)
RES_128x296 = const(0b10000000)
RES_160x296 = const(0b11000000)
LUT_OTP = const(0b00000000)
LUT_REG = const(0b00100000)
FORMAT_BWR = const(0b00000000)
FORMAT_BW = const(0b00010000)
SCAN_DOWN = const(0b00000000)
SCAN_UP = const(0b00001000)
SHIFT_LEFT = const(0b00000000)
SHIFT_RIGHT = const(0b00000100)
BOOSTER_OFF = const(0b00000000)
BOOSTER_ON = const(0b00000010)
RESET_SOFT = const(0b00000000)
RESET_NONE = const(0b00000001)
# PWR
VDS_EXTERNAL = const(0b00000000)
VDS_INTERNAL = const(0b00000010)
VDG_EXTERNAL = const(0b00000000)
VDG_INTERNAL = const(0b00000001)
VCOM_VD = const(0b00000000)
VCOM_VG = const(0b00000100)
VGHL_16V = const(0b00000000)
VGHL_15V = const(0b00000001)
VGHL_14V = const(0b00000010)
VGHL_13V = const(0b00000011)
# BOOSTER
START_10MS = const(0b00000000)
START_20MS = const(0b01000000)
START_30MS = const(0b10000000)
START_40MS = const(0b11000000)
STRENGTH_1 = const(0b00000000)
STRENGTH_2 = const(0b00001000)
STRENGTH_3 = const(0b00010000)
STRENGTH_4 = const(0b00011000)
STRENGTH_5 = const(0b00100000)
STRENGTH_6 = const(0b00101000)
STRENGTH_7 = const(0b00110000)
STRENGTH_8 = const(0b00111000)
OFF_0_27US = const(0b00000000)
OFF_0_34US = const(0b00000001)
OFF_0_40US = const(0b00000010)
OFF_0_54US = const(0b00000011)
OFF_0_80US = const(0b00000100)
OFF_1_54US = const(0b00000101)
OFF_3_34US = const(0b00000110)
OFF_6_58US = const(0b00000111)
# PFS
FRAMES_1 = const(0b00000000)
FRAMES_2 = const(0b00010000)
FRAMES_3 = const(0b00100000)
FRAMES_4 = const(0b00110000)
# TSE
TEMP_INTERNAL = const(0b00000000)
TEMP_EXTERNAL = const(0b10000000)
OFFSET_0 = const(0b00000000)
OFFSET_1 = const(0b00000001)
OFFSET_2 = const(0b00000010)
OFFSET_3 = const(0b00000011)
OFFSET_4 = const(0b00000100)
OFFSET_5 = const(0b00000101)
OFFSET_6 = const(0b00000110)
OFFSET_7 = const(0b00000111)
OFFSET_MIN_8 = const(0b00001000)
OFFSET_MIN_7 = const(0b00001001)
OFFSET_MIN_6 = const(0b00001010)
OFFSET_MIN_5 = const(0b00001011)
OFFSET_MIN_4 = const(0b00001100)
OFFSET_MIN_3 = const(0b00001101)
OFFSET_MIN_2 = const(0b00001110)
OFFSET_MIN_1 = const(0b00001111)
# PLL flags
HZ_29 = const(0b00111111)
HZ_33 = const(0b00111110)
HZ_40 = const(0b00111101)
HZ_50 = const(0b00111100)
HZ_67 = const(0b00111011)
HZ_100 = const(0b00111010)
HZ_200 = const(0b00111001)
class UC8151:
def __init__(self,spi,*,cs,dc,rst,busy,width=128,height=296,speed=0,mirror_x=False,mirror_y=False,inverted=False,no_flickering=False,debug=False,full_update_period=50,dangerous_reaffirm_black=False):
self.spi = spi
self.cs = Pin(cs,Pin.OUT) if cs != None else None
self.dc = Pin(dc,Pin.OUT) if dc != None else None
self.rst = Pin(rst,Pin.OUT) if rst != None else None
self.busy = Pin(busy,Pin.IN) if busy != None else None
self.width = width
self.height = height
self.speed = speed
self.no_flickering = no_flickering
self.dangerous_reaffirm_black = dangerous_reaffirm_black
self.inverted = inverted
self.mirror_x = mirror_x
self.mirror_y = mirror_y
self.debug = debug
self.initialize_display()
self.raw_fb = bytearray(width*height//8)
self.fb = framebuf.FrameBuffer(self.raw_fb,width,height,framebuf.MONO_HLSB)
# Updates done with the current speed settings.
self.update_count = 0
# From time to time, if partial updates or no-flickering updates
# are used, we perform a full update regardless, to remove ghosting,
# make the background color more even and so forth.
self.full_update_period = full_update_period
# Return true if the display is busy performing an update, or also
# if for any other reason it is not able to accept commands right now.
def is_busy(self):
return self.busy.value() == False # Low on busy condition.
def wait_ready(self):
if self.busy == None: return
while self.is_busy(): pass
# Perform hardware reset.
def reset(self):
self.rst.off()
time.sleep_ms(10)
self.rst.on()
time.sleep_ms(10)
self.wait_ready()
# Send just a command, just data, or a command + data, depending
# on cmd or data being both bytes() / bytearrays() or None.
def write(self,cmd=None,data=None):
self.wait_ready()
self.cs.off()
self.dc.off() # Command mode
self.spi.write(bytes([cmd]))
if data:
if isinstance(data,int): data = bytes([data])
if isinstance(data,list): data = bytes(data)
self.dc.on() # Data mode
self.spi.write(data)
self.cs.on()
# This function sets the PSR register, a key register to
# set up the panel configuration. We call this function each
# time a new speed / LUTs are configured, because when we
# revert to the default LUTs (speed 0) the PSR register
# must be set to look into the internal tables.
def set_panel_configuration(self):
# Panel configuration: resolution, format and so forth.
psr_settings = FORMAT_BW | BOOSTER_ON | RESET_NONE
if self.width == 96 and self.height == 230:
psr_settings |= RES_96x230
elif self.width == 96 and self.height == 252:
psr_settings |= RES_96x252
elif self.width == 128 and self.height == 296:
psr_settings |= RES_128x296
elif self.width == 160 and self.height == 296:
psr_settings |= RES_160x296
else:
raise ValueError("Unsupported display resolution specified")
# If we select the default update speed, we will use the
# lookup tables defined by the device. Otherwise the values for
# the lookup tables must be read from the registers we set.
if self.speed == 0:
psr_settings |= LUT_OTP
else:
psr_settings |= LUT_REG
# Configure mirroring.
psr_settings |= SHIFT_LEFT if self.mirror_x else SHIFT_RIGHT
psr_settings |= SCAN_DOWN if self.mirror_y else SCAN_UP
self.write(CMD_PSR,psr_settings)
def initialize_display(self):
self.reset()
# Soft reset
self.write(CMD_PSR,RESET_SOFT)
# Here we set the voltage levels that are used for the low-high
# transitions states, driven by the waveforms provided in the
# lookup tables for refresh.
#
# The VCOM_DC is left to the default of -0.10v, since
# CMD_VDCS is not given.
#
# VDH/VDL are set to what is the chip default: 10v.
# There are drivers around using 11v, but I guess given that
# everything seems fine with 10v, there is no reason to increase
# voltage and current at the risk of damage.
self.write(CMD_PWR, \
[VDS_INTERNAL|VDG_INTERNAL,
VCOM_VD|VGHL_16V, # VCOM_VD sets VCOM voltage to VD[HL]+VCOM_DC
0b100110, # +10v VDH
0b100110, # -10v VDL
0b000011 # VDHR default (For red pixels, not used here)
])
# Set the lookup tables depending on the speed.
self.set_waveform_lut()
# Booster soft start configuration.
self.write(CMD_BTST, \
[START_10MS | STRENGTH_3 | OFF_6_58US,
START_10MS | STRENGTH_3 | OFF_6_58US,
START_10MS | STRENGTH_3 | OFF_6_58US])
# Power on
self.write(CMD_PON)
# Setup the pain manel configuration
self.set_panel_configuration()
# Setup the duration (in frames) for the discharge executed for
# power-off. This is useful to left the pixels in a "stable"
# configuration. One frame means 10 milliseconds at 100 HZ.
#
# At 100 HZ one frame time may not be enough. It was experimentally
# observed that the display is more stable after being completely
# disconnected if we use a 40 millisecond delay. There is a cost
# for this of course: more latency in functions executing the POF
# command.
self.write(CMD_PFS,FRAMES_4)
# Use the internal temperature sensor. Unfortunately there is
# no input line connected, so we can't read the temperature.
self.write(CMD_TSE,TEMP_INTERNAL | OFFSET_0)
# Set non overlapping period for Gate and Source lines.
# TCON set to 0x22 means 12 periods (1 period is 660ns) for
# both S->G and G->S transition.
self.write(CMD_TCON,0x22)
# VCOM data and interval settings. We can use this register in order
# to invert the display so that black is white and white is black,
# without resorting to software changes.
#
# The bits 7:6 are the "border data selection":
# For black/white mode: 00,11 = floating. 01: LUTBW, 10: LUTWB.
# For black/white/red: 00 floating, 01 LUTR, 10 LUTW, 11 LUTB.
# We keep it at 11 since it is floating in all the cases so
# that the border will not flicker.
self.write(CMD_CDI,0b11_01_1100 if self.inverted else 0b11_00_1100)
# PLL clock frequency. Setting it to 100 HZ means that each
# "frame" in the counts in the refresh waveforms lookup tables will
# last 10 milliseconds. Certain drivers set it to 200 HZ for the fast
# modes, but in my tests it does not work well at all, so we take
# it to a fixed 100 HZ.
self.write(CMD_PLL,HZ_100)
# Power off the display. We will pover on it again on the
# next update of the image.
self.write(CMD_POF)
# This function is only for debugging. We use computed LUTs, however
# it is quite handy in order to experiment with different display
# capabilities to play with the tables by hand and quickly check the
# results. This function should be removed eventually since it uses
# a lot of MicroPython memory because of the tables.
#
# P.S. the currently set LUTs in the tables are just trivial
# examples and don't have any special use.
def set_handmade_lut(self):
VCOM = bytes([
0x00, 0x01, 0x01, 0x02, 0x00, 0x01,
0x00, 0x02, 0x02, 0x03, 0x00, 0x02,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00
])
BW = bytes([
0x99, 0x02, 0x02, 0x00, 0x00, 0x01,
0xaa, 0x02, 0x02, 0x03, 0x00, 0x02,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00
])
WB = bytes([
0x66, 0x02, 0x02, 0x00, 0x00, 0x01,
0x55, 0x02, 0x02, 0x03, 0x00, 0x02,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00
])
WW = bytes([
0b01_10_0000, 0x08, 0x08, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00
])
BB = bytes([
0b10_01_0000, 0x08, 0x08, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00
])
self.write(CMD_LUT_VCOM,VCOM)
self.write(CMD_LUT_BW,BW)
self.write(CMD_LUT_WB,WB)
self.write(CMD_LUT_BB,BB)
self.write(CMD_LUT_WW,WW)
# This function (after all this big comment) sets the lookup tables
# used during the display refresh. Before reading it, it's a good
# idea to understand how LUTs are encoded:
#
# We have a table for each transition possibile:
# white -> white (WW)
# white -> black (WB)
# black -> black (BB)
# black -> white (BW)
# and a final table that controls the VCOM common voltage.
#
# The update process happens in steps, each 7 rows of each
# table tells the display how to set each pixel based on the
# transition (WW, WB, BB, BW) and VCOM in each step. Usually just
# three or two steps are used.
#
# When we talk about a "WW" transition or "WB" transition, what we
# mean is the difference between the pixel value set in the *last*
# display update, and the pixel value of the *current* display update.
# So if in the previous update a pixel was white, and later the pixel
# turns black, then it's a WB transition and will be handled by the
# WB LUT.
#
# VCOM table is different and explained later, but for the first four
# tables, this is how to interpret them. For instance the
# lookup for WW in the second row (step 1) could be set to:
#
# 0x60, 0x02, 0x02, 0x00, 0x00, 0x01 -> last byte = repeat count
# \ | | | |
# \ +------+----+-----+-> number of frames
# \_ four transitions
#
# The first byte must be read as four two bits integers:
#
# 0x60 is: 01|10|00|00
#
# Where each 2 bit number menas:
# 00 - Put to ground
# 01 - Put to VDH voltage (10v in our config): pixel becomes black
# 10 - Put to VDL voltage (-10v in our config): pixel becomes white
# 11 - Floating / Not used.
#
# Then the next four bytes in the row mean how many
# "frames" we hold a given state (the frame duration depends on the
# frequency set in the PLL, here we configure it to 100 HZ so 10ms).
#
# So in the above case: hold pixel at VDH for 2 frames, then
# hold at VDL for 2 frame. The last two entries say 0 frames,
# so they are not used. The final byte in the row, 0x01, means
# that this sequence must be repeated just once. If it was 2
# the whole sequence would repeat 2 times and so forth.
#
# The VCOM table is similar, but the bits meaning is different:
# 00 - Put VCOM to VCOM_DC voltage
# 01 - Put VCOM to VDH+VCOM_DC voltage (see PWR register config)
# 10 - Put VCOM to VDL+VCOM_DC voltage
# 11 - Floating / Not used.
#
# The VCOM table has two additional bytes at the end.
# The meaning of these bytes apparently is the following (but I'm not
# really sure what they mean):
#
# First additional byte: ST_XON, if (1<<step) bit is set, for
# that step all gates are on. Second byte: ST_CHV. Like ST_XON
# but if (1<<step) bit is set, VCOM voltage is set to high for this step.
#
# However they are set to 0 in all the LUTs I saw, so they are generally
# not used and we don't use it either.
def set_waveform_lut(self,speed=None,no_flickering=None):
if speed == None: speed = self.speed
if no_flickering == None: no_flickering = self.no_flickering
if speed < 1:
# For the default speed, we don't set any LUT, but resort
# to the one inside the device. __init__() will take care
# to tell the chip to use internal LUTs by setting the right
# PSR field to LUT_OTP.
return
if speed > 6:
raise ValueError("Speed must be set between 0 and 6")
# In this driver we try to do things a bit differently and compute
# LUTs on the fly depending on the 'speed' requested by the user.
# Each successive speed value cuts the display update time in half.
# Floating point speeds are possible, so 2.5 will be between
# 2 and 3 from the POV of speed and quality.
#
# Moreover, we check if no_flickering was set to True. In this case
# we change the LUTs in two ways, with the goal to prevent the
# unpleasant color inversion flickering effect:
#
# 1. The 2 x black-to-white ping-pong is NOT performed.
# This usually is performed to set the display pixels in a
# know state to prevent ghosting, leaving residues and so forth.
# 2. Waveforms for white-to-white and black-to-black will avoid
# to invert the pixels at all. We will just set the
# voltage to ground (see more about this below).
# Create the LUTs to fill with the computed values.
VCOM = bytearray(44)
BW = bytearray(42)
WB = bytearray(42)
WW = bytearray(42)
BB = bytearray(42)
# Those periods are powers of two so that each successive 'speed'
# value cuts them in half cleanly.
period = 64 # Num. of frames for single direction change.
hperiod = period//2 # Num. of frames for back-and-forth change.
# Actual period is scaled by the speed factor
period = int(max(period / (2**(speed-1)), 1))
hperiod = int(max(hperiod / (2**(speed-1)), 1))
# Set the waveform in the LUTs.
#
# Note: for all the steps, VCOM is just taken at VCOM_DC,
# so the VCOM pattern is always 0.
#
# Also note that the generated WW/BB LUTs are charge-neutral. This
# means that we apply the same level of positive and negative
# voltages for each pixel. This is VERY important to make sure
# the display microparticles don't get permanently damaged.
if speed <= 3 and no_flickering == False:
# For low speed everything is charge-neutral, even WB/BW.
# Phase 1: long go-inverted-color.
self.set_lut_row(VCOM,0,pat=0,dur=[period,0,0,0],rep=2)
self.set_lut_row(BW,0,pat=0b01_000000,dur=[period,0,0,0],rep=2)
self.set_lut_row(WB,0,pat=0b10_000000,dur=[period,0,0,0],rep=2)
# Phase 2: short ping/pong.
self.set_lut_row(VCOM,1,pat=0,dur=[hperiod,hperiod,0,0],rep=2)
self.set_lut_row(BW,1,pat=0b10_01_0000,dur=[hperiod,hperiod,0,0],rep=1)
self.set_lut_row(WB,1,pat=0b01_10_0000,dur=[hperiod,hperiod,0,0],rep=1)
# Phase 3: long go-target-color.
self.set_lut_row(VCOM,2,pat=0,dur=[period,0,0,0],rep=2)
self.set_lut_row(BW,2,pat=0b10_000000,dur=[period,0,0,0],rep=2)
self.set_lut_row(WB,2,pat=0b01_000000,dur=[period,0,0,0],rep=2)
# For this speed, we use the same LUTs for WW/BB as well. We
# will clear it for no flickering modes.
WW[:] = BW[:]
BB[:] = WB[:]
else: # Speed > 3
# For greater than 3 we use non charge-neutral LUTs for WB/BW
# since the inpulse is short and it gets reversed when the
# pixel changes color, so that's not a problem for the display,
# however we still need to use charge-neutral LUTs for WW/BB.
# Phase 1 for BW/WB. Just go to target color.
# Phase 1 for WW/BB. Invert, go back.
p = period
self.set_lut_row(VCOM,0,pat=0,dur=[p,p,p,p],rep=1)
self.set_lut_row(BW,0,pat=0b10_00_00_00,dur=[p*4,0,0,0],rep=1)
self.set_lut_row(WB,0,pat=0b01_00_00_00,dur=[p*4,0,0,0],rep=1)
self.set_lut_row(WW,0,pat=0b01_10_00_00,dur=[p*2,p*2,0,0],rep=1)
self.set_lut_row(BB,0,pat=0b10_01_00_00,dur=[p*2,p*2,0,0],rep=1)
# If no flickering mode is enabled, we use an empty
# waveform BB and WW. The screen will be fully refreshed every
# self.full_update_period updates.
#
# !!! WARNING !!!
#
# For BB/WW, to just re-affirm the pixel color applying only the
# voltage needed for the target color will result in microparticles
# to be semi-permanently polarized towards one way, with damages
# that often go away in one day or alike, but it may ruin the
# display forever insisting enough. So we just put the pixels to
# ground, and from time to time do a full refresh.
if no_flickering == True:
self.clear_lut(WW)
self.clear_lut(BB)
# If the user sets the dangerous_reaffirm_black parameter during
# the initialization, we very slightly (just two frames) reaffirm
# the black pixels in the BB table, so that they will go less
# towards greyish color. Potentially this could polarize the
# display.
if self.dangerous_reaffirm_black:
self.set_lut_row(BB,0,pat=0b10_01_10_01,dur=[0,2,0,0],rep=1)
if self.debug:
print(f"LUTs for speed {speed} no_flickering {no_flickering}:")
self.show_lut(BW,"BW")
self.show_lut(WB,"WB")
self.show_lut(WW,"WW")
self.show_lut(BB,"BB")
# Set the LUTs into the display registers.
self.write(CMD_LUT_VCOM,VCOM)
self.write(CMD_LUT_BW,BW)
self.write(CMD_LUT_WB,WB)
self.write(CMD_LUT_WW,WW)
self.write(CMD_LUT_BB,BB)
# Change the speed once the driver is already initialized.
# Sometimes in an application there are updates we want to do
# at high quality, other updates we want to do faster.
def set_speed(self,new_speed,*,no_flickering=None,full_update_period=None):
if no_flickering != None:
self.no_flickering = no_flickering
if full_update_period != None:
self.full_update_period = full_update_period
self.speed = new_speed
self.set_panel_configuration()
self.set_waveform_lut()
self.update_count = 0
# Set a given row in a waveform lookup table.
# Lookup tables are 6 rows per 7 cols, like in this
# example:
#
# 0x40, 0x17, 0x00, 0x00, 0x00, 0x02, <- step 0
# 0x90, 0x17, 0x17, 0x00, 0x00, 0x02, <- step 1
# 0x40, 0x0A, 0x01, 0x00, 0x00, 0x01, <- step 2
# 0xA0, 0x0E, 0x0E, 0x00, 0x00, 0x02, <- step 3
# 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, <- step 4
# 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, <- step 5
# 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, <- step 6
#
# Fror each step the first byte encodes the 4 patterns, two bits
# each. The next 4 bytes the duration in frames. The Final byte
# the repetition number. See the top comment of set_waveform_lut()
# for more info.
def set_lut_row(self,lut,row,pat,dur,rep):
if row > 6: raise valueError("LUTs have 7 total rows (0-6)")
off = 6*row
lut[off] = pat
lut[off+1] = dur[0]
lut[off+2] = dur[1]
lut[off+3] = dur[2]
lut[off+4] = dur[3]
lut[off+5] = rep
# Just fill the array of zero values.
@micropython.viper
def clear_lut(self,lut):
l = int(len(lut))
p = ptr8(lut)
for i in range(l): p[i] = 0
# Show a well-formatted LUT table. Useful for debugging.
def show_lut(self,lut,name):
print(name,":")
for i in range(7):
if i > 0 and lut[i*6] == 0: break
print(bin(lut[i*6]|256)[3:],end=' ')
for j in range(1,6):
print(hex(lut[i*6+j]),end=' ')
print("")
print("---")
# Wait for the display to return back able to accept commands
# (if it is updating the display it remains busy), and switch
# it off once it is possible.
def wait_and_switch_off(self):
self.wait_ready()
self.write(CMD_POF)
# Update the screen with the current image in the framebuffer.
# If 'fb' is passed, we use a different framebuffer instead.
# If blocking is True, the function blocks until the update
# is complete and powers the display off. Otherwise the display
# will remain powered on, and can (and should) be turned off later
# with wait_and_switch_off().
#
# The function returns False and does nothing in case the
# blocking argument is False but there is an update already
# in progress. Otherwise True is returned and the display is updated.
def update(self,blocking=True,fb=None):
if fb == None: fb = self.raw_fb
if blocking == False and self.is_busy(): return False
# At the first refresh with a no-flickering mode, and also
# every N refreshes, do a full refresh. Unless it's set to 0.
do_full_update = self.full_update_period != 0 and \
self.update_count % self.full_update_period == 0 and \
self.no_flickering
if do_full_update: self.set_waveform_lut(min(2,self.speed),False)
self.send_image(fb)
self.write(CMD_DRF) # Start refresh cycle.
# Load back the no-flickering LUTs if we forced a flickered refresh.
if do_full_update: self.set_waveform_lut()
if blocking: self.wait_and_switch_off()
self.update_count += 1
return True
# Transfer bitmap to device. The chip has two framebuffers, one for
# the old image and one for the new image. This way it can do the
# difference when performing the update and apply the correct waveform
# depending on WW, BB, WB, BW transition. When we refresh, the new
# framebuffer is automatically copied to the old one, but we can control
# both framebuffer when we wish to.
def send_image(self,fb,old=False):
self.write(CMD_PON) # Power on
self.write(CMD_PTOU) # Partial mode off
if old:
self.write(CMD_DTM1,fb) # Transfer to previous image buffer.
else:
self.write(CMD_DTM2,fb) # Transfer to current image buffer.
self.write(CMD_DSP) # End of data
# Helper function to render greyscale images.
#
# This function has to generate two one-bit images, using the two
# framebuffers fb1 and fb2. For three grey levels, we set the
# before/after bits in order to trigger the WW/BB/WB conditions,
# so that we assign to each of this LUTs the waveform needed to
# generate a different level of grey. We use BW for pixels that
# should not be toched (either set in past iterations or yet to be
# set with a different level of grey than level,level+1,level+2).
#
# Using this trick, we can set the pixels of three different levels
# of greys in the same update. The image to render should be in
# 'grey', where each byte maps to a pixel: higher values means
# a more lighter level of grey.
#
# The three level of greys that this function will match are
# given by 'level': from level to level+2 inclusive.
@micropython.viper
def set_pixels_for_greyscale(self, grey:ptr8, fb1:ptr8, fb2:ptr8, width:int, height:int, shift:int, level:int) -> int:
count = int(width*height)
anypixel = int(0)
for i in range(count//8):
fb1[i] = 0
fb2[i] = 0
for i in range(count):
# Pixel that reached level "1" are the only ones at the
# current grey level we want to set.
byte = i >> 3
bit = 1 << (7-(i&7))
# Given that a greater value of the pixel means lighter
# pixels, but for the display more frames to turn this pixel
# towards black is the reverse, we invert the pixel value.
# We also need to scale it from 0-255 to 0-(greys-1).
converted = (255-grey[i]) >> shift # Invert and rescale.
if converted == level: # WW condition
anypixel = 1
pass
elif converted == level+1: # BB condition
anypixel = 1
fb1[byte] |= bit
fb2[byte] |= bit
elif converted == level+2: # WB condition
anypixel = 1
fb1[byte] |= bit
else: # BW condition, pixels not touched.
fb2[byte] |= bit
return anypixel
# Load and render the greyscale image specified. The
# image format must be: 4 bytes WWHH width,height
# unsigned 16 bit, big endian. Followed by width*height
# bytes. Each byte is a pixel with color 0 (black) to
# 255 (white).
def load_greyscale_image(self,filename,greyscale=16):
# Read image data.
f = open(filename,"rb")
f.read(4)
imgdata = bytearray(self.width*self.height)
f.readinto(imgdata)
print("Image max luminance:",max(imgdata))
self.update_greyscale(imgdata,greyscale)
# Update the display in greyscale "faked mode" using the image
# into the framebuffer "buffer". The buffer should be width*height
# pixels (depending on the display size) bytes. Each byte has
# a value in the range 0-255, from black to white.
def update_greyscale(self,buffer,greyscale):
greyscales = [32,16,8,4] # Must be power of 2.
frames_to_black = 32 # Frames needed to go from white to black, using
# a too large number may damage the display, but
# using a bit larger number may improve contrast.
if greyscale not in greyscales:
raise ValueError("Unsupproted greyscale")
# Amount of right shifting to convert 0-255 grey value to
# 0-(greyscale-1) value.
shift = 3+greyscales.index(greyscale)
# Prepare the display: we want it to be white, and we want the
# registers LUTs to be selected (all speeds but speed 0).
orig_speed = self.speed
orig_no_flickering = self.no_flickering
self.set_speed(2,no_flickering=True)
self.fb.fill(0)
self.update(blocking=True) # All screen white
# Nothing to do for white pixels or already black pixels.
# Set an empty LUT.
LUT = bytearray(42)
VCOM = bytearray(44)
# Now for each level of grey in the image, create a bitmap composed
# only of pixels of that level of grey, and create an ad-hoc LUT
# that polarizes pixels towards black for an amount of time (frames)
# proportional to the grey level.
fb2 = bytearray(self.width*self.height//8)
for g in range(0,greyscale,3):
# Resort to a faster method in Viper to set the pixels for the
# current greyscale level.
anypixel = self.set_pixels_for_greyscale(buffer,self.raw_fb,fb2,self.width,self.height,shift,g+1)
if anypixel:
# Transfer the "old" image, so that for difference
# with the new we transfer via .update() we create
# the four set of conditions (WW, BB, WB, BW) based
# on the difference between the bits in the two
# images.
self.send_image(fb2,old=True)
# We set the framebuffer with just the pixels of the level
# of grey we are handling in this cycle, so now we apply
# the voltage for a time proportional to this level (see
# the setting of LUT[1], that is the number of frames).
LUT[0] = 0x55 # Go black
LUT[5] = 1 # Repeat 1 for all
LUT[1] = int(frames_to_black/(greyscale-1)*(g+1))
self.write(CMD_LUT_WW,LUT)
LUT[1] = int(frames_to_black/(greyscale-1)*(g+2))
self.write(CMD_LUT_BB,LUT)
LUT[1] = int(frames_to_black/(greyscale-1)*(g+3))
self.write(CMD_LUT_WB,LUT)
LUT[1] = 0 # These pixels will be unaffected, none of them
# is of the three colors handled in this cycle.
LUT[5] = 0
self.write(CMD_LUT_BW,LUT)
# Minimal VCOM LUT to avoid any unneeded wait.
VCOM[0] = 0 # Already zero, just to make it obvious.
VCOM[1] = int(frames_to_black/greyscale*(g+3))
VCOM[5] = 1
self.write(CMD_LUT_VCOM,VCOM)
# Finally update.
self.update(blocking=True)
# Restore a normal LUT based on configured speed.
self.set_speed(orig_speed,no_flickering=orig_no_flickering)
self.wait_and_switch_off()
if __name__ == "__main__":
from machine import SPI
import random
spi = SPI(0, baudrate=12000000, phase=0, polarity=0, sck=Pin(18), mosi=Pin(19), miso=Pin(16))
eink = UC8151(spi,cs=17,dc=20,rst=21,busy=26,speed=2,no_flickering=False)
gs8buf = bytearray(128*296)
gsfb = framebuf.FrameBuffer(gs8buf,128,296,framebuf.GS8)
square_id = 0
for x in range(0,128,128//4):
for y in range(0,296,296//8):
color = int((255/31)*square_id)
gsfb.fill_rect(x,y,128//4,296//8,color)
square_id += 1
eink.update_greyscale(gs8buf,32)
time.sleep(2)
for speed in [2,3,4.3,5]:
for noflick in [False,True]:
# Reconfig
eink.speed = speed
eink.no_flickering = noflick
eink.set_waveform_lut()
random.seed(123)
for _ in range(4):
eink.fb.text(f"Speed:{speed}",2,0)
eink.fb.text(f"No_Flick:{noflick}",2,10)
x = random.randrange(100)
y = 80+random.randrange(100)
eink.fb.text("TEST",x,y,1)
eink.fb.ellipse(x,y,50,30,1)
eink.fb.fill_rect(x,y+50,50,50,1)
start = time.ticks_ms()
eink.update(blocking=True)
update_time = time.ticks_ms() - start
print("Update time:",update_time)
eink.fb.fill(0)
eink.fb.text(f"delay MS:{update_time}",10,25)
time.sleep(1)