forked from chenxwh/cog-damo-text2video
-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathinference.py
238 lines (196 loc) · 8.82 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import argparse
import os
import warnings
from pathlib import Path
from uuid import uuid4
from utils.lora import inject_inferable_lora
import torch
from diffusers import DPMSolverMultistepScheduler, TextToVideoSDPipeline
from models.unet_3d_condition import UNet3DConditionModel
from einops import rearrange
from torch.nn.functional import interpolate
import imageio
import decord
from train import handle_memory_attention, load_primary_models
from utils.lama import inpaint_watermark
def initialize_pipeline(model, device="cuda", xformers=False, sdp=False):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
scheduler, tokenizer, text_encoder, vae, _unet = load_primary_models(model)
del _unet #This is a no op
unet = UNet3DConditionModel.from_pretrained(model, subfolder='unet')
# unet.disable_gradient_checkpointing()
pipeline = TextToVideoSDPipeline.from_pretrained(
pretrained_model_name_or_path=model,
scheduler=scheduler,
tokenizer=tokenizer,
text_encoder=text_encoder.to(device=device, dtype=torch.half),
vae=vae.to(device=device, dtype=torch.half),
unet=unet.to(device=device, dtype=torch.half),
)
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
unet._set_gradient_checkpointing(value=False)
handle_memory_attention(xformers, sdp, unet)
vae.enable_slicing()
return pipeline
def vid2vid(
pipeline, init_video, init_weight, prompt, negative_prompt, height, width, num_inference_steps, generator, guidance_scale
):
num_frames = init_video.shape[2]
init_video = rearrange(init_video, "b c f h w -> (b f) c h w")
pipeline.generator=generator
latents = pipeline.vae.encode(init_video).latent_dist.sample()
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=num_frames)
latents = pipeline.scheduler.add_noise(
original_samples=latents * 0.18215,
noise=torch.randn_like(latents),
timesteps=(torch.ones(latents.shape[0]) * pipeline.scheduler.num_train_timesteps * (1 - init_weight)).long(),
)
if latents.shape[0] != len(prompt):
latents = latents.repeat(len(prompt), 1, 1, 1, 1)
do_classifier_free_guidance = guidance_scale > 1.0
prompt_embeds = pipeline._encode_prompt(
prompt=prompt,
negative_prompt=negative_prompt,
device=latents.device,
num_images_per_prompt=1,
do_classifier_free_guidance=do_classifier_free_guidance,
)
pipeline.scheduler.set_timesteps(num_inference_steps, device=latents.device)
timesteps = pipeline.scheduler.timesteps
timesteps = timesteps[round(init_weight * len(timesteps)) :]
with pipeline.progress_bar(total=len(timesteps)) as progress_bar:
for t in timesteps:
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = pipeline.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = pipeline.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# reshape latents
bsz, channel, frames, width, height = latents.shape
latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
# compute the previous noisy sample x_t -> x_t-1
latents = pipeline.scheduler.step(noise_pred, t, latents).prev_sample
# reshape latents back
latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4)
progress_bar.update()
video_tensor = pipeline.decode_latents(latents)
return video_tensor
@torch.inference_mode()
def inference(
model,
prompt,
negative_prompt=None,
batch_size=1,
num_frames=16,
width=256,
height=256,
num_steps=50,
guidance_scale=9,
init_video=None,
init_weight=0.5,
device="cuda",
xformers=False,
sdp=False,
lora_path='',
lora_rank=64,
seed=0,
):
with torch.autocast(device, dtype=torch.half):
pipeline = initialize_pipeline(model, device, xformers, sdp)
inject_inferable_lora(pipeline, lora_path, r=lora_rank)
prompt = [prompt] * batch_size
negative_prompt = ([negative_prompt] * batch_size) if negative_prompt is not None else None
if init_video is not None:
g_cuda = torch.Generator(device='cuda')
g_cuda.manual_seed(seed)
g_cpu = torch.Generator()
g_cpu.manual_seed(seed)
videos = vid2vid(
pipeline=pipeline,
init_video=init_video.to(device=device, dtype=torch.half),
init_weight=init_weight,
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=num_steps,
generator=g_cuda,
guidance_scale=guidance_scale,
)
else:
g_cuda = torch.Generator(device='cuda')
g_cuda.manual_seed(seed)
g_cpu = torch.Generator()
g_cpu.manual_seed(seed)
videos = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_frames=num_frames,
height=height,
width=width,
num_inference_steps=num_steps,
generator=g_cuda,
guidance_scale=guidance_scale,
output_type="pt",
).frames
return videos
def export_to_video(video_frames, output_video_path, fps):
writer = imageio.get_writer(output_video_path, format="FFMPEG", fps=fps)
for frame in video_frames:
writer.append_data(frame)
writer.close()
def run(**args):
decord.bridge.set_bridge("torch")
output_dir = args.pop("output_dir")
fps = args.pop("fps")
remove_watermark = args.pop("remove_watermark")
init_video = args.get("init_video", None)
if init_video is not None:
vr = decord.VideoReader(init_video)
init = rearrange(vr[:], "f h w c -> c f h w").div(127.5).sub(1).unsqueeze(0)
init = interpolate(init, size=(args['num_frames'], args['height'], args['width']), mode="trilinear")
args["init_video"] = init
videos = inference(**args)
os.makedirs(output_dir, exist_ok=True)
for idx, video in enumerate(videos):
if remove_watermark:
video = rearrange(video, "c f h w -> f c h w").add(1).div(2)
video = inpaint_watermark(video)
video = rearrange(video, "f c h w -> f h w c").clamp(0, 1).mul(255)
else:
video = rearrange(video, "c f h w -> f h w c").clamp(-1, 1).add(1).mul(127.5)
video = video.byte().cpu().numpy()
filename = os.path.join(output_dir, f"output-{idx}.mp4")
export_to_video(video, filename, fps)
yield filename
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", type=str, required=True)
parser.add_argument("-p", "--prompt", type=str, required=True)
parser.add_argument("-n", "--negative_prompt", type=str, default=None)
parser.add_argument("-o", "--output_dir", type=str, default="./output")
parser.add_argument("-B", "--batch_size", type=int, default=1)
parser.add_argument("-T", "--num_frames", type=int, default=16)
parser.add_argument("-W", "--width", type=int, default=256)
parser.add_argument("-H", "--height", type=int, default=256)
parser.add_argument("-s", "--num_steps", type=int, default=50)
parser.add_argument("-g", "--guidance-scale", type=float, default=9)
parser.add_argument("-i", "--init-video", type=str, default=None)
parser.add_argument("-iw", "--init-weight", type=float, default=0.5)
parser.add_argument("-f", "--fps", type=int, default=8)
parser.add_argument("-d", "--device", type=str, default="cuda")
parser.add_argument("-x", "--xformers", action="store_true")
parser.add_argument("-S", "--sdp", action="store_true")
parser.add_argument("-lP", "--lora_path", type=str, default="")
parser.add_argument("-lR", "--lora_rank", type=int, default=64)
parser.add_argument("-rw", "--remove-watermark", action="store_true")
parser.add_argument("-seed", "--seed", type=int, default =0)
args = vars(parser.parse_args())
for filename in run(**args):
print(filename)