-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathcnn_predict.py
94 lines (74 loc) · 3.13 KB
/
cnn_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import numpy as np
from img_preprocess import Preprocess
import pickle
from cnn_model import CNN
import json
import time
MODEL_FILE = 'pickle_models/cnn_object_15_'
CLASSES = ["FIST","HAND","ONE","PEACE"] #change here if you want to add new gesture
params_file = open('params.json','r')
params = json.load(params_file)
params_file.close()
start = time.time()
class CNNLite():
def __init__(self):
self.cnn_obj = pickle.load(open(MODEL_FILE,'r'))
#this function does a feed forward
def feedForward(self, X, training=True):
#layer 1
#this is to store intermediate results just for training thing
X = self.cnn_obj.convulationOp(X,layer=1) # 50X50X4
X = self.cnn_obj.relu(X)
X,max_indexes_x, max_indexes_y = self.cnn_obj.maxPooling(X,params["pooling_stride_layer_1"]["val"],params["pooling_filter_size_layer_1"]["val"])
#layer 2
X = self.cnn_obj.convulationOp(X,layer=2) #of dimension 23X23X3
X = self.cnn_obj.relu(X)
X,max_indexes_x_layer_2,max_indexes_y_layer_2 = self.cnn_obj.maxPooling(X,params["pooling_stride_layer_2"]["val"],params["pooling_filter_size_layer_2"]["val"])
X = self.cnn_obj.flattenLayer(X) #this flattens the layer to make a column vector and adds 1 as a bias
X = self.cnn_obj.fullyConnected(X,layer=1)
X = self.cnn_obj.relu(X)
X = self.cnn_obj.flattenLayer(X) #add one as bias
#perform dropout
if(training):
X = self.cnn_obj.dropout(X,self.cnn_obj.dropout_percent_layer_1)
X = self.cnn_obj.fullyConnected(X,layer=2)
X = self.cnn_obj.relu(X)
X = self.cnn_obj.flattenLayer(X) #add one as bias
if(training):
X = self.cnn_obj.dropout(X,self.cnn_obj.dropout_percent_layer_2)
X = self.cnn_obj.fullyConnected(X,layer=3)
X = self.cnn_obj.softmax(X)
return X
#give one image point
def predict(self,X):
probabilities = self.feedForward(X,training=False)
print probabilities
max_index = np.argmax(probabilities)
print CLASSES[max_index]
return CLASSES[max_index],probabilities[max_index]
def test(self,X,y):
accuracy = []
print "testing started"
for im_index in range(len(X)):
if(im_index%10==0):
print "done for images "+str(im_index)
print "time taken ------------------- "+str(time.time()-start)
predicted_class, predicted_probab = self.predict(X[im_index])
# for row in X[im_index]:
# print row
print y[im_index]
if predicted_class == CLASSES[np.argmax(y[im_index])]:
accuracy.append(1)
else:
accuracy.append(0)
return (1.0 * sum(accuracy)/len(accuracy))*100
def main():
process_obj = Preprocess()
cnn_obj = CNNLite()
process_obj = process_obj.process()
X,y = process_obj.X_validation, process_obj.y_validation
acc = cnn_obj.test(X[:100],y[:100])
print("accuracy is, "+str(acc)+" %")
print "time taken ------------------- "+str(time.time()-start)
if __name__ == '__main__':
main()