-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlayers.py
70 lines (56 loc) · 2.1 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import math
import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features):
super(GraphConvolution, self).__init__()
self.linear = nn.Linear(in_features, out_features)
def forward(self, x, adj):
y = x
y = torch.mm(adj, self.linear(y))
return y
# class GraphConvolution(Module):
# """
# Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
# """
# def __init__(self, in_features, out_features, bias=True):
# super(GraphConvolution, self).__init__()
# self.in_features = in_features
# self.out_features = out_features
# self.weight = Parameter(torch.FloatTensor(in_features, out_features))
# if bias:
# self.bias = Parameter(torch.FloatTensor(out_features))
# else:
# self.register_parameter('bias', None)
# self.reset_parameters()
# def reset_parameters(self):
# stdv = 1. / math.sqrt(self.weight.size(1))
# self.weight.data.uniform_(-stdv, stdv)
# if self.bias is not None:
# self.bias.data.uniform_(-stdv, stdv)
# def forward(self, in_put, adj):
# # # input('enter for input')
# # print(in_put, in_put.shape)
# # input('enter for weight')
# # print(self.weight, self.weight.shape)
# support = torch.mm(in_put, self.weight)
# # input('enter for support')
# # print(support, support.shape)
# output = torch.mm(adj, support)
# # input('enter for output')
# # print(output, output.shape)
# # print(support.sum())
# # input('continue')
# if self.bias is not None:
# return output + self.bias
# else:
# return output
# def __repr__(self):
# return self.__class__.__name__ + ' (' \
# + str(self.in_features) + ' -> ' \
# + str(self.out_features) + ')'