-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathsync.go
452 lines (404 loc) · 14 KB
/
sync.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
package gust
import (
"sync"
"sync/atomic"
)
// NewMutex returns a new *Mutex.
func NewMutex[T any](data T) *Mutex[T] {
return &Mutex[T]{data: data}
}
// NewRWMutex returns a new *RWMutex.
func NewRWMutex[T any](data T) *RWMutex[T] {
return &RWMutex[T]{data: data}
}
// Mutex is a better generic-type wrapper for `sync.Mutex` that holds a value.
// A Mutex is a mutual exclusion lock.
// The zero value for a Mutex is an unlocked mutex.
//
// A Mutex must not be copied after first use.
//
// In the terminology of the Go memory model,
// the n'th call to Unlock “synchronizes before” the m'th call to Lock
// for any n < m.
// A successful call to TryLock is equivalent to a call to Lock.
// A failed call to TryLock does not establish any “synchronizes before”
// relation at all.
type Mutex[T any] struct {
inner sync.Mutex
data T
}
// Lock locks m.
// If the lock is already in use, the calling goroutine
// blocks until the mutex is available.
func (m *Mutex[T]) Lock() T {
m.inner.Lock()
return m.data
}
// TryLock tries to lock m and reports whether it succeeded.
//
// Note that while correct uses of TryLock do exist, they are rare,
// and use of TryLock is often a sign of a deeper problem
// in a particular use of mutexes.
func (m *Mutex[T]) TryLock() Option[T] {
if m.inner.TryLock() {
return Some(m.data)
}
return None[T]()
}
// Unlock unlocks m.
// It is a run-time error if m is not locked on entry to Unlock.
//
// A locked Mutex is not associated with a particular goroutine.
// It is allowed for one goroutine to lock a Mutex and then
// arrange for another goroutine to unlock it.
func (m *Mutex[T]) Unlock(newData ...T) {
if len(newData) > 0 {
m.data = newData[0]
}
m.inner.Unlock()
}
// LockScope securely read and write the data in the Mutex[T].
func (m *Mutex[T]) LockScope(f func(old T) (new T)) {
m.inner.Lock()
defer m.inner.Unlock()
m.data = f(m.data)
}
// TryLockScope tries to securely read and write the data in the Mutex[T].
func (m *Mutex[T]) TryLockScope(f func(old T) (new T)) {
if m.inner.TryLock() {
defer m.inner.Unlock()
m.data = f(m.data)
}
}
// RWMutex is a better generic-type wrapper for `sync.RWMutex` that holds a value.
// A RWMutex is a reader/writer mutual exclusion lock.
// The lock can be held by an arbitrary number of readers or a single writer.
// The zero value for a RWMutex is an unlocked mutex.
//
// A RWMutex must not be copied after first use.
//
// If a goroutine holds a RWMutex for reading and another goroutine might
// call Lock, no goroutine should expect to be able to acquire a read lock
// until the initial read lock is released. In particular, this prohibits
// recursive read locking. This is to ensure that the lock eventually becomes
// available; a blocked Lock call excludes new readers from acquiring the
// lock.
//
// In the terminology of the Go memory model,
// the n'th call to Unlock “synchronizes before” the m'th call to Lock
// for any n < m, just as for Mutex.
// For any call to RLock, there exists an n such that
// the n'th call to Unlock “synchronizes before” that call to RLock,
// and the corresponding call to RUnlock “synchronizes before”
// the n+1'th call to Lock.
type RWMutex[T any] struct {
inner sync.RWMutex
data T
}
// Lock locks rw for writing.
// If the lock is already locked for reading or writing,
// Lock blocks until the lock is available.
func (m *RWMutex[T]) Lock() T {
m.inner.Lock()
return m.data
}
// TryLock tries to lock rw for writing and reports whether it succeeded.
//
// Note that while correct uses of TryLock do exist, they are rare,
// and use of TryLock is often a sign of a deeper problem
func (m *RWMutex[T]) TryLock() Option[T] {
if m.inner.TryLock() {
return Some(m.data)
}
return None[T]()
}
// Unlock unlocks rw for writing. It is a run-time error if rw is
// not locked for writing on entry to Unlock.
//
// As with Mutexes, a locked RWMutex is not associated with a particular
// goroutine. One goroutine may RLock (Lock) a RWMutex and then
// arrange for another goroutine to RUnlock (Unlock) it.
func (m *RWMutex[T]) Unlock(newData ...T) {
if len(newData) > 0 {
m.data = newData[0]
}
m.inner.Unlock()
}
// TryLockScope tries to securely read and write the data in the RWMutex[T].
func (m *RWMutex[T]) TryLockScope(write func(old T) (new T)) {
if m.inner.TryLock() {
defer m.inner.Unlock()
m.data = write(m.data)
}
}
// LockScope securely read and write the data in the RWMutex[T].
func (m *RWMutex[T]) LockScope(write func(old T) (new T)) {
m.inner.Lock()
defer m.inner.Unlock()
m.data = write(m.data)
}
// Happens-before relationships are indicated to the race detector via:
// - Unlock -> Lock: readerSem
// - Unlock -> RLock: readerSem
// - RUnlock -> Lock: writerSem
//
// The methods below temporarily disable handling of race synchronization
// events in order to provide the more precise model above to the race
// detector.
//
// For example, atomic.AddInt32 in RLock should not appear to provide
// acquire-release semantics, which would incorrectly synchronize racing
// readers, thus potentially missing races.
// RLock locks rw for reading.
//
// It should not be used for recursive read locking; a blocked Lock
// call excludes new readers from acquiring the lock. See the
// documentation on the RWMutex type.
func (m *RWMutex[T]) RLock() T {
m.inner.RLock()
return m.data
}
// TryRLock tries to lock rw for reading and reports whether it succeeded.
//
// Note that while correct uses of TryRLock do exist, they are rare,
// and use of TryRLock is often a sign of a deeper problem
// in a particular use of mutexes.
func (m *RWMutex[T]) TryRLock() Option[T] {
if m.inner.TryRLock() {
return Some(m.data)
}
return None[T]()
}
// RUnlock undoes a single RLock call;
// it does not affect other simultaneous readers.
// It is a run-time error if rw is not locked for reading
// on entry to RUnlock.
func (m *RWMutex[T]) RUnlock() {
m.inner.RUnlock()
}
// TryRLockScope tries to securely read the data in the RWMutex[T].
func (m *RWMutex[T]) TryRLockScope(read func(T)) {
if m.inner.TryRLock() {
defer m.inner.RUnlock()
read(m.data)
}
}
// RLockScope securely read the data in the RWMutex[T].
func (m *RWMutex[T]) RLockScope(read func(T)) {
m.inner.RLock()
defer m.inner.RUnlock()
read(m.data)
}
// TryBest tries to read and do the data in the RWMutex[T] safely,
// swapping the data when readAndDo returns false and then trying to do again.
func (m *RWMutex[T]) TryBest(readAndDo func(T) bool, swapWhenFalse func(old T) (new Option[T])) {
if readAndDo == nil {
return
}
var ok bool
m.RLockScope(func(old T) {
ok = readAndDo(old)
})
if ok || swapWhenFalse == nil {
return
}
m.inner.Lock()
defer m.inner.Unlock()
if readAndDo(m.data) {
return
}
swapWhenFalse(m.data).Inspect(func(newT T) {
m.data = newT
readAndDo(newT)
})
}
// SyncMap is a better generic-type wrapper for `sync.Map`.
// A SyncMap is like a Go map[interface{}]interface{} but is safe for concurrent use
// by multiple goroutines without additional locking or coordination.
// Loads, stores, and deletes run in amortized constant time.
//
// The SyncMap type is specialized. Most code should use a plain Go map instead,
// with separate locking or coordination, for better type safety and to make it
// easier to maintain other invariants along with the map content.
//
// The SyncMap type is optimized for two common use cases: (1) when the entry for a given
// key is only ever written once but read many times, as in caches that only grow,
// or (2) when multiple goroutines read, write, and overwrite entries for disjoint
// sets of keys. In these two cases, use of a SyncMap may significantly reduce lock
// contention compared to a Go map paired with a separate Mutex or RWMutex.
//
// The zero SyncMap is empty and ready for use. A SyncMap must not be copied after first use.
//
// In the terminology of the Go memory model, SyncMap arranges that a write operation
// “synchronizes before” any read operation that observes the effect of the write, where
// read and write operations are defined as follows.
// Load, LoadAndDelete, LoadOrStore are read operations;
// Delete, LoadAndDelete, and Store are write operations;
// and LoadOrStore is a write operation when it returns loaded set to false.
type SyncMap[K any, V any] struct {
inner sync.Map
}
// Load returns the value stored in the map for a key.
func (m *SyncMap[K, V]) Load(key K) Option[V] {
return BoolAssertOpt[V](m.inner.Load(key))
}
// Store sets the value for a key.
func (m *SyncMap[K, V]) Store(key K, value V) {
m.inner.Store(key, value)
}
// LoadOrStore returns the existing value for the key if present.
// Otherwise, it stores the given value, and returns None.
func (m *SyncMap[K, V]) LoadOrStore(key K, value V) (existingValue Option[V]) {
return BoolAssertOpt[V](m.inner.LoadOrStore(key, value))
}
// LoadAndDelete deletes the value for a key, returning the previous value if any.
func (m *SyncMap[K, V]) LoadAndDelete(key K) (deletedValue Option[V]) {
return BoolAssertOpt[V](m.inner.LoadAndDelete(key))
}
// Delete deletes the value for a key.
func (m *SyncMap[K, V]) Delete(key K) {
m.inner.Delete(key)
}
// Range calls f sequentially for each key and value present in the map.
// If f returns false, range stops the iteration.
//
// Range does not necessarily correspond to any consistent snapshot of the SyncMap's
// contents: no key will be visited more than once, but if the value for any key
// is stored or deleted concurrently (including by f), Range may reflect any
// mapping for that key from any point during the Range call. Range does not
// block other methods on the receiver; even f itself may call any method on m.
//
// Range may be O(N) with the number of elements in the map even if f returns
// false after a constant number of calls.
func (m *SyncMap[K, V]) Range(f func(key K, value V) bool) {
m.inner.Range(func(key any, value any) bool {
k, ok := key.(K)
if !ok {
return false
}
v, ok := value.(V)
if !ok {
return false
}
return f(k, v)
})
}
// AtomicValue is a better generic-type wrapper for `atomic.Value`.
// A AtomicValue provides an atomic load and store of a consistently typed value.
// The zero value for a AtomicValue returns nil from Load.
// Once Store has been called, a AtomicValue must not be copied.
//
// A AtomicValue must not be copied after first use.
type AtomicValue[T any] struct {
inner atomic.Value
}
// Load returns the value set by the most recent Store.
// It returns None if there has been no call to Store for this AtomicValue.
func (v *AtomicValue[T]) Load() (val Option[T]) {
return AssertOpt[T](v.inner.Load())
}
// Store sets the value of the AtomicValue to x.
// All calls to Store for a given AtomicValue must use values of the same concrete type.
// Store of an inconsistent type panics, as does Store(nil).
func (v *AtomicValue[T]) Store(val T) {
v.inner.Store(val)
}
// Swap stores new into AtomicValue and returns the previous value. It returns None if
// the AtomicValue is empty.
//
// All calls to Swap for a given AtomicValue must use values of the same concrete
// type. Swap of an inconsistent type panics, as does Swap(nil).
func (v *AtomicValue[T]) Swap(new T) (old Option[T]) {
return AssertOpt[T](v.inner.Swap(new))
}
// CompareAndSwap executes the compare-and-swap operation for the AtomicValue.
//
// All calls to CompareAndSwap for a given AtomicValue must use values of the same
// concrete type. CompareAndSwap of an inconsistent type panics, as does
// CompareAndSwap(old, nil).
func (v *AtomicValue[T]) CompareAndSwap(old T, new T) (swapped bool) {
return v.inner.CompareAndSwap(old, new)
}
// LazyValue a value that can be lazily initialized once and read concurrently.
type LazyValue[T any] struct {
// done indicates whether the action has been performed.
// It is first in the struct because it is used in the hot path.
// The hot path is inlined at every call site.
// Placing done first allows more compact instructions on some architectures (amd64/386),
// and fewer instructions (to calculate offset) on other architectures.
done uint32
m sync.Mutex
value Result[T]
onceInit func() Result[T]
}
// NewLazyValue new empty LazyValue.
func NewLazyValue[T any]() *LazyValue[T] {
return new(LazyValue[T])
}
// NewLazyValueWithFunc new LazyValue with initialization function.
func NewLazyValueWithFunc[T any](onceInit func() Result[T]) *LazyValue[T] {
return new(LazyValue[T]).SetInitFunc(onceInit)
}
// NewLazyValueWithValue new LazyValue with initialization value.
func NewLazyValueWithValue[T any](v T) *LazyValue[T] {
return new(LazyValue[T]).SetInitValue(v)
}
// NewLazyValueWithZero new LazyValue with zero.
func NewLazyValueWithZero[T any]() *LazyValue[T] {
return new(LazyValue[T]).SetInitZero()
}
// SetInitFunc set initialization function.
// NOTE: onceInit can not be nil
func (o *LazyValue[T]) SetInitFunc(onceInit func() Result[T]) *LazyValue[T] {
if o.IsInitialized() {
return o
}
o.m.Lock()
defer o.m.Unlock()
o.onceInit = onceInit
return o
}
// SetInitValue set the initialization value.
func (o *LazyValue[T]) SetInitValue(v T) *LazyValue[T] {
_ = o.SetInitFunc(func() Result[T] {
return Ok(v)
})
return o
}
// Zero creates a zero T.
func (*LazyValue[T]) Zero() T {
var v T
return v
}
// SetInitZero set the zero value for initialization.
func (o *LazyValue[T]) SetInitZero() *LazyValue[T] {
return o.SetInitValue(o.Zero())
}
// IsInitialized determine whether it is initialized.
func (o *LazyValue[T]) IsInitialized() bool {
return atomic.LoadUint32(&o.done) != 0
}
func (o *LazyValue[T]) markInit() {
atomic.StoreUint32(&o.done, 1)
}
const ErrLazyValueWithoutInit = "*LazyValue[T]: onceInit function is nil"
// TryGetValue concurrency-safe get the Result[T].
func (o *LazyValue[T]) TryGetValue() Result[T] {
if !o.IsInitialized() {
o.m.Lock()
defer o.m.Unlock()
if o.done == 0 {
defer o.markInit()
if o.onceInit == nil {
o.value = Err[T](ErrLazyValueWithoutInit)
} else {
o.value = o.onceInit()
}
}
}
return o.value
}
// GetPtr returns its pointer or nil.
func (o *LazyValue[T]) GetPtr() *T {
return o.TryGetValue().AsPtr()
}