-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
161 lines (126 loc) · 5.52 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import keras
import tensorflow as tf
import os
import glob
import numpy as np
import time
import multiprocessing
from models import build_discriminator, build_generator, build_adversarial_model
from keras.optimizers import Adam, SGD
from keras.callbacks import TensorBoard
from scipy.misc import imread
from utils import normalize, denormalize, save_rgb_img, write_log
# Create path to save sampled images from generator
if os.path.isdir('results/img/') == False:
os.system('mkdir results/img/')
# Check number of cores and use for training
num_cores = multiprocessing.cpu_count()
config = tf.ConfigProto(device_count={'GPU':1, 'CPU':num_cores})
sess = tf.Session(config=config)
keras.backend.set_session(sess)
print('Number of cores available: {}'.format(num_cores))
# Create function that trains model and execute upon running script
def train():
# Set main parameters
start_time = time.time()
dataset_dir = "data/*.*"
batch_size = 64
z_shape = 100
epochs = 10000
dis_learning_rate = 0.005
gen_learning_rate = 0.005
dis_momentum = 0.5
gen_momentum = 0.5
dis_nesterov = True
gen_nesterov = True
# Define optimizers (can change to Adam later)
#dis_optimizer = SGD(lr=dis_learning_rate, momentum=dis_momentum, nesterov=dis_nesterov)
#gen_optimizer = SGD(lr=gen_learning_rate, momentum=gen_momentum, nesterov=gen_nesterov)
dis_optimizer = Adam()
gen_optimizer = Adam()
# Load images
all_images = []
for index, filename in enumerate(glob.glob(dataset_dir)):
all_images.append(imread(filename, flatten=False, mode='RGB'))
# Compile images into array and normailze them
X = np.array(all_images)
X = normalize(X)
X = X.astype(np.float32)
# Build the GAN models
dis_model = build_discriminator()
dis_model.compile(loss='binary_crossentropy', optimizer=dis_optimizer)
gen_model = build_generator()
gen_model.compile(loss='mse', optimizer=gen_optimizer)
adversarial_model = build_adversarial_model(gen_model, dis_model)
adversarial_model.compile(loss='binary_crossentropy', optimizer=gen_optimizer)
# Record training data to the tensorboard
tensorboard = TensorBoard(log_dir="results/logs/{}".format(time.time()), write_images=True, write_grads=True, write_graph=True)
tensorboard.set_model(gen_model)
tensorboard.set_model(dis_model)
for epoch in range(epochs):
print("--------------------------")
print("Epoch:{}".format(epoch))
dis_losses = []
gen_losses = []
num_batches = int(X.shape[0] / batch_size)
print("Number of batches:{}".format(num_batches))
for index in range(num_batches):
print("Batch:{}".format(index))
z_noise = np.random.normal(0, 1, size=(batch_size, z_shape))
# z_noise = np.random.uniform(-1, 1, size=(batch_size, 100))
generated_images = gen_model.predict_on_batch(z_noise)
# visualize_rgb(generated_images[0])
"""
Train the discriminator model
"""
dis_model.trainable = True
image_batch = X[index * batch_size:(index + 1) * batch_size]
# Label switching every three epochs
if epoch % 3 == 0:
# Use label smoothing to avoid discriminator approaching zero loss quickly
y_fake = np.random.uniform(low=0.7, high=1.2, size=(batch_size, ))
y_real = np.random.uniform(low=0, high=0.3, size=(batch_size, ))
else:
y_real = np.random.uniform(low=0.7, high=1.2, size=(batch_size, ))
y_fake = np.random.uniform(low=0, high=0.3, size=(batch_size, ))
# Real labels to train generator
y_real_gen = np.random.uniform(low=0.7, high=1.0, size=(batch_size, ))
dis_loss_real = dis_model.train_on_batch(image_batch, y_real)
dis_loss_fake = dis_model.train_on_batch(generated_images, y_fake)
d_loss = (dis_loss_real+dis_loss_fake)/2
print("d_loss:", d_loss)
dis_model.trainable = False
"""
Train the generator model(adversarial model)
"""
z_noise = np.random.normal(0, 1, size=(batch_size, z_shape))
# z_noise = np.random.uniform(-1, 1, size=(batch_size, 100))
g_loss = adversarial_model.train_on_batch(z_noise, y_real_gen)
print("g_loss:", g_loss)
dis_losses.append(d_loss)
gen_losses.append(g_loss)
"""
Sample some images and save them
"""
# Sample images every one hundred epochs
if epoch % 20 == 0:
z_noise = np.random.normal(0, 1, size=(batch_size, z_shape))
gen_images1 = gen_model.predict_on_batch(z_noise)
for img in gen_images1[:2]:
save_rgb_img(denormalize(img), "results/img/gen_{}.png".format(epoch))
print("Epoch:{}, dis_loss:{}".format(epoch, np.mean(dis_losses)))
print("Epoch:{}, gen_loss: {}".format(epoch, np.mean(gen_losses)))
"""
Save losses to Tensorboard after each epoch
"""
write_log(tensorboard, 'discriminator_loss', np.mean(dis_losses), epoch)
write_log(tensorboard, 'generator_loss', np.mean(gen_losses), epoch)
"""
Save models
"""
gen_model.save("results/models/generator_model.h5")
dis_model.save("results/models/discriminator_model.h5")
print("Time:", (time.time() - start_time))
# Execute training upon running script
if __name__ == '__main__':
train()