-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
85 lines (68 loc) · 2.57 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import keras.backend as K
from keras import Sequential, Input, Model
from keras.layers import Conv2D
from keras.layers import Dense
from keras.layers import ReLU
from keras.layers import Reshape
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D
from keras.layers.core import Activation
from keras.layers.core import Flatten
from keras.layers.normalization import BatchNormalization
from keras.layers.pooling import MaxPooling2D
K.set_image_dim_ordering('tf')
# Create function to build the generator CNN model
def build_generator():
gen_model = Sequential()
gen_model.add(Dense(input_dim=100, output_dim=2048))
gen_model.add(BatchNormalization())
gen_model.add(ReLU())
gen_model.add(Dense(256 * 8 * 8))
gen_model.add(BatchNormalization())
gen_model.add(ReLU())
gen_model.add(Reshape((8, 8, 256), input_shape=(256 * 8 * 8,)))
gen_model.add(UpSampling2D(size=(2, 2)))
gen_model.add(Conv2D(128, (5, 5), padding='same'))
gen_model.add(BatchNormalization())
gen_model.add(ReLU())
gen_model.add(UpSampling2D(size=(2, 2)))
gen_model.add(Conv2D(64, (5, 5), padding='same'))
gen_model.add(BatchNormalization())
gen_model.add(ReLU())
gen_model.add(UpSampling2D(size=(2, 2)))
gen_model.add(Conv2D(3, (5, 5), padding='same'))
gen_model.add(Activation('tanh'))
return gen_model
# Create function to build the discriminator CNN model
def build_discriminator():
dis_model = Sequential()
dis_model.add(
Conv2D(128, (5, 5),
padding='same',
input_shape=(64, 64, 3))
)
dis_model.add(BatchNormalization())
dis_model.add(LeakyReLU(alpha=0.2))
dis_model.add(MaxPooling2D(pool_size=(2, 2)))
#dis_model.add(Conv2D(256, (3, 3)))
#dis_model.add(BatchNormalization())
#dis_model.add(LeakyReLU(alpha=0.2))
#dis_model.add(MaxPooling2D(pool_size=(2, 2)))
dis_model.add(Conv2D(512, (3, 3)))
dis_model.add(BatchNormalization())
dis_model.add(LeakyReLU(alpha=0.2))
dis_model.add(MaxPooling2D(pool_size=(2, 2)))
dis_model.add(Flatten())
dis_model.add(Dense(1024))
dis_model.add(BatchNormalization())
dis_model.add(LeakyReLU(alpha=0.2))
dis_model.add(Dense(1))
dis_model.add(Activation('sigmoid'))
return dis_model
# Create function to build the adversarial model combining the generator and discriminator models
def build_adversarial_model(gen_model, dis_model):
model = Sequential()
model.add(gen_model)
dis_model.trainable = False
model.add(dis_model)
return model