-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
177 lines (143 loc) · 4.15 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Importing Dependencies
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# from transformers import disk_offload
from langchain import PromptTemplate, HuggingFacePipeline
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
# Faiss Index Path
FAISS_INDEX = "vectorstore/"
# Custom prompt template
custom_prompt_template = """[INST] <<SYS>>
You are a trained bot to guide people about Indian Law. You will answer user's query with your knowledge and the context provided.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
Do not say thank you and tell you are an AI Assistant and be open about everything.
<</SYS>>
Use the following pieces of context to answer the users question.
Context : {context}
Question : {question}
Answer : [/INST]
"""
# Return the custom prompt template
def set_custom_prompt_template():
"""
Set the custom prompt template for the LLMChain
"""
prompt = PromptTemplate(template=custom_prompt_template, input_variables=["context", "question"])
return prompt
# Return the LLM
def load_llm():
"""
Load the LLM
"""
# Model ID
repo_id = 'meta-llama/Llama-2-7b-chat-hf'
# Load the model
model = AutoModelForCausalLM.from_pretrained(
repo_id,
device_map='auto',
#load_in_4bit=True
)
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(
repo_id,
use_fast=True
)
# Create pipeline
pipe = pipeline(
'text-generation',
model=model,
tokenizer=tokenizer,
max_length=512
)
# Load the LLM
llm = HuggingFacePipeline(pipeline=pipe)
return llm
# def load_llm():
# """
# Load the LLM
# """
# # Model ID
# repo_id = 'meta-llama/Llama-2-7b-chat-hf'
# # Load the model
# model = AutoModelForCausalLM.from_pretrained(
# repo_id,
# device_map='auto',
# # load_in_4bit=True
# )
# # Use disk_offload to avoid the ValueError
# model = disk_offload(model)
# # Load the tokenizer
# tokenizer = AutoTokenizer.from_pretrained(
# repo_id,
# use_fast=True
# )
# # Create pipeline
# pipe = pipeline(
# 'text-generation',
# model=model,
# tokenizer=tokenizer,
# max_length=512
# )
# # Load the LLM
# llm = HuggingFacePipeline(pipeline=pipe)
# return llm
# def load_llm():
# """
# Load the LLM
# """
# # Model ID
# repo_id = 'meta-llama/Llama-2-7b-chat-hf'
# # Load the model
# model = AutoModelForCausalLM.from_pretrained(
# repo_id,
# device_map='auto',
# # load_in_4bit=True
# )
# # Use disk_offload to avoid the ValueError
# model = disk_offload(model)
# # Load the tokenizer
# tokenizer = AutoTokenizer.from_pretrained(
# repo_id,
# use_fast=True
# )
# # Create pipeline
# pipe = pipeline(
# 'text-generation',
# model=model,
# tokenizer=tokenizer,
# max_length=512
# )
# # Load the LLM
# llm = HuggingFacePipeline(pipeline=pipe)
# return llm
# Return the chain
def retrieval_qa_chain(llm, prompt, db):
"""
Create the Retrieval QA chain
"""
# Create the chain
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type='stuff',
retriever=db.as_retriever(search_kwargs={'k': 2}),
return_source_documents=True,
chain_type_kwargs={'prompt': prompt}
)
return qa_chain
# Return the chain
def qa_pipeline():
"""
Create the QA pipeline
"""
# Load the HuggingFace embeddings
embeddings = HuggingFaceEmbeddings()
# Load the index
db = FAISS.load_local("vectorstore/", embeddings)
# Load the LLM
llm = load_llm()
# Set the custom prompt template
qa_prompt = set_custom_prompt_template()
# Create the retrieval QA chain
chain = retrieval_qa_chain(llm, qa_prompt, db)
return chain