-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIn_Punish_gradient.m
40 lines (40 loc) · 1.27 KB
/
In_Punish_gradient.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
%% 内点法惩罚函数选取在line16可调整,计算逆矩阵(line30)计算速度很慢
clear all;clc
syms x1 x2 x;
f=x1^2+x2^2-x1*x2-10*x1-4*x2+60;%原函数
g1=x1-6;g2=x2-8;g3=x1+x2-11;%约束条件转换函数
e1=0.1;%梯度法最优值收敛精度
e2=0.1;%内点法收敛精度
D=1;%差值
k=1;
A(k)=0;B(k)=0;%A,B分别记录x1,x2点,初始点为[0,0]
r(k)=3;a=0.7;%r为惩罚因子,a为递增系数
%% 循环
while D>e2 %罚因子迭代收敛条件
x1=A(k);x2=B(k);
%约束问题转换后的新目标函数;
F=f-r(k)*(log10(-g1)+log10(-g2)+log10(-g3));%F=f+r(k)*(1/g1^2+1/g2^2+1/g3^2);%F=f-r(k)*(1/g1+1/g2+1/g3);
%梯度法求F的最优解xr
Fx1=diff(F,'x1');Fx2=diff(F,'x2');Fx1x1=diff(Fx1,'x1');Fx1x2=diff(Fx1,'x2');Fx2x1=diff(Fx2,'x1');Fx2x2=diff(Fx2,'x2');%求偏导、海森元素。
for n=1:100 %梯度法求最优值。
F1=subs(Fx1); %求解梯度值和海森矩阵
F2=subs(Fx2);
F11=subs(Fx1x1);
F12=subs(Fx1x2);
F21=subs(Fx2x1);
F22=subs(Fx2x2);
if(double(sqrt(F1^2+F2^2))<=e1) %梯度法最优值收敛条件
A(k+1)=double(x1);B(k+1)=double(x2);
break;
else
X=[x1 x2]'-([F11 F12;F21 F22])\[F1 F2]';
x1=X(1,1);x2=X(2,1);
end
end
D=double(sqrt((A(k+1)-A(k))^2+(B(k+1)-B(k))^2));
r(k+1)=a*r(k);
k=k+1;
end
A(k)
B(k)
double(subs(f))