IBM Granite - Wikipedia (function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"fe98ec39-2d0d-48d4-a465-adbdd63e29cb","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"IBM_Granite","wgTitle":"IBM Granite","wgCurRevisionId":1261049551,"wgRevisionId":1261049551,"wgArticleId":76093849,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","IBM products","IBM software","Large language models","Generative artificial intelligence","Artificial neural networks","2023 software","Free software"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"IBM_Granite","wgRelevantArticleId":76093849,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[], "wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":7000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q124693286","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth", "ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession"]; (RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});}); Jump to content
Main menu
Main menu
move to sidebar hide
Navigation
Contribute
Search
Appearance
Personal tools
Pages for logged out editors learn more
move to sidebar hide
-
[
(Top)
](#)
-
[
1 Foundation models
](#Foundation_models)
-
[
2 See also
](#See_also)
-
[
3 References
](#References)
-
[
4 External links
](#External_links)
Toggle the table of contents
Add languages
English
Tools
Tools
move to sidebar hide
Actions
General
- What links here
- Related changes
- Upload file
- Special pages
- Permanent link
- Page information
- Cite this page
- Get shortened URL
- Download QR code
Print/export
In other projects
Appearance
move to sidebar hide
From Wikipedia, the free encyclopedia
2023 text-generating language model
.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}
| | |
| --- | --- |Granite
| | |
| Developer(s) | IBM Research[1] |
| Initial release | November 7, 2023; 12 months ago (2023-11-07) |
| Platform | IBM Watsonx (initially)
GitHub
Hugging Face
RHEL AI |
| Type | .mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}
* Multimodal
* Large language model
* Generative pre-trained transformer
* Foundation model |
| License | Proprietary
Code models: Open Source (Apache 2.0)[2] |
.mw-parser-output .machine-learning-list-title{background-color:#ddddff}html.skin-theme-clientpref-night .mw-parser-output .machine-learning-list-title{background-color:#222}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .machine-learning-list-title{background-color:#222}} .mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}.mw-parser-output .nobold{font-weight:normal}
IBM Granite is a series of decoder-only AI foundation models created by IBM. It was announced on September 7, 2023,[3][4] and an initial paper was published 4 days later.[5] Initially intended for use in the IBM's cloud-based data and generative AI platform Watsonx along with other models,[6] IBM opened the source code of some code models.[7] Granite models are trained on datasets curated from Internet, academic publishings, code datasets, legal and finance documents.[8][9][1]
[edit]
A foundation model is an AI model trained on broad data at scale such that it can be adapted to a wide range of downstream tasks.[10]
Granite's first foundation models were Granite.13b.instruct and Granite.13b.chat. The "13b" in their name comes from 13 billion, the amount of parameters they have as models, lesser than most of the larger models of the time. Later models vary from 3 to 34 billion parameters.[3][11]
On May 6, 2024, IBM released the source code of four variations of Granite Code Models under Apache 2, an open source permissive license that allows completely free use, modification and sharing of the software, and put them on Hugging Face for public use.[12][13] According to IBM's own report, Granite 8b outperforms Llama 3 on several coding related tasks within similar range of parameters.[14][15]
[edit]
- Mistral AI, a company that also provides open source models
- GPT
- LLaMA
- Cyc
- Gemini
[edit]
.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}
- ^ a b .mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}McDowell, Steve. "IBM's New Granite Foundation Models Enable Safe Enterprise AI". Forbes.
- ^ ibm-granite/granite-code-models, IBM Granite, 2024-05-08, retrieved 2024-05-08
- ^ a b Nirmal, Dinesh (September 7, 2023). "Building AI for business: IBM's Granite foundation models". IBM.
- ^ "IBM debuts Granite series of hardware-efficient language models". September 7, 2023.
- ^ "Granite Foundation Models" (PDF). IBM. 2023-11-30.
- ^ Fritts, Harold (2024-04-22). "IBM Adds Meta Llama 3 To watsonx, Expands AI Offerings". StorageReview.com. Retrieved 2024-05-08.
- ^ Jindal, Siddharth (2024-05-07). "IBM Releases Open-Source Granite Code Models, Outperforms Llama 3". Analytics India Magazine. Retrieved 2024-05-08.
- ^ Azhar, Ali (2024-04-08). "IBM Patents a Faster Method to Train LLMs for Enterprises". Datanami. Retrieved 2024-05-08.
- ^ Wiggers, Kyle (2023-09-07). "IBM rolls out new generative AI features and models". TechCrunch. Retrieved 2024-05-08.
- ^ "Introducing the Center for Research on Foundation Models (CRFM)". Stanford HAI. 18 August 2021.
- ^ Pawar, Sahil (2023-09-11). "IBM Introduces Granite Series LLM Models for Watsonx Platform". Analytics Drift. Retrieved 2024-05-09.
- ^ Nine, Adrianna (May 7, 2024). "IBM Makes Granite AI Models Open-Source Under New InstructLab Platform". ExtremeTech.
- ^ "IBM open-sources its Granite AI models - and they mean business". ZDNET. Retrieved 2024-05-21.
- ^ Jindal, Siddharth (2024-05-07). "IBM Releases Open-Source Granite Code Models, Outperforms Llama 3". Analytics India Magazine. Retrieved 2024-05-09.
- ^ Synced (2024-05-13). "IBM's Granite Code: Powering Enterprise Software Development with AI Precision | Synced". syncedreview.com. Retrieved 2024-05-21.
[edit]
.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}
Hardware
Current | * Mainframe * IBM Z * Power microprocessors * Power Systems * Storage * FlashSystem * DS8000 * Quantum * Q System One * Q System Two * Eagle * Osprey * Heron * Condor |
Former | * Blue Gene * Cell microprocessors * PowerPC * Midrange computer * Personal Computer * Selectric * ThinkPad |
Other
- Carbon Design System
- Cloud
- Cognos Analytics
- Connections
- Criminal Reduction Utilising Statistical History
- Fortran
- ILOG
- Information Management Software
- Lotus Software
- Mainframe operating systems
- Mashup Center
- Planning Analytics
- PureQuery
- Quantum Platform
- Rational Software
- SPSS
- Tivoli Software
- Watson
- Watsonx
- Granite
- WebSphere
Business
entities
Facilities
- Towers
- 1250 René-Lévesque, Montreal, QC
- One Atlantic Center, Atlanta, GA
- Software Labs
- IBM Buildings
- 330 North Wabash, Chicago, IL
- Honolulu
- Seattle
- Facilities
- Cambridge Scientific Center
- IBM Hursley
- Canada Head Office Building
- IBM Rochester
Initiatives
- Academy of Technology
- Deep Thunder
- Fellow
- The Great Mind Challenge
- Linux Technology Center
- SkillsBuild
- Smarter Planet
- Virtual Universe Community
- World Community Grid
- Think conference
Inventions
- Automated teller machine
- Cynefin framework
- DRAM
- Electronic keypunch
- Floppy disk
- Hard disk drive
- Magnetic stripe card
- Relational model
- Sabre airline reservation system
- Scanning tunneling microscope
- Financial swaps
- Universal Product Code
Terminology
- Big Blue
- Commercial Processing Workload
- Customer engineer
- Globally integrated enterprise
- e-business
- Think slogan
- Thomas J. Watson (1914–1956)
- Thomas Watson Jr. (1956–1971)
- T. Vincent Learson (1971–1973)
- Frank T. Cary (1973–1981)
- John R. Opel (1981–1985)
- John Fellows Akers (1985–1993)
- Louis V. Gerstner Jr. (1993–2002)
- Samuel J. Palmisano (2002–2011)
- Ginni Rometty (2012–2020)
- Arvind Krishna (since 2020)
Board of
directors
- Thomas Buberl
- David Farr
- Alex Gorsky
- Michelle J. Howard
- Arvind Krishna
- Andrew Liveris
- Martha E. Pollack
- Joseph R. Swedish
- Peter R. Voser
Other
-
Big Blue sports teams
Concepts
- Parameter
- Loss functions
- Regression
- Clustering
- Gradient descent
- Backpropagation
- Attention
- Convolution
- Normalization
- Activation
- Gating
- Weight initialization
- Regularization
- Datasets
- Prompt engineering
- Reinforcement learning
- Diffusion
- Latent diffusion model
- Autoregression
- Adversary
- RAG
- RLHF
- Self-supervised learning
- Word embedding
- Hallucination
Applications
Implementations
Audio–visual | * AlexNet * WaveNet * Human image synthesis * HWR * OCR * Speech synthesis * ElevenLabs * Speech recognition * Whisper * Facial recognition * AlphaFold * Text-to-image models * DALL-E * Flux * Ideogram * Midjourney * Stable Diffusion * Text-to-video models * Sora * Dream Machine * VideoPoet * Music generation * Suno AI * Udio |
Text | * Word2vec * Seq2seq * GloVe * BERT * T5 * Llama * Chinchilla AI * PaLM * GPT * 1 * 2 * 3 * J * ChatGPT * 4 * 4o * o1 * Claude * Gemini * chatbot * Grok * LaMDA * BLOOM * Project Debater * IBM Watson * IBM Watsonx * Granite * PanGu-Σ |
Decisional | * AlphaGo * AlphaZero * OpenAI Five * Self-driving car * MuZero * Action selection * AutoGPT * Robot control |
People
- Alan Turing
- Warren Sturgis McCulloch
- Walter Pitts
- John von Neumann
- Claude Shannon
- Marvin Minsky
- John McCarthy
- Nathaniel Rochester
- Allen Newell
- Cliff Shaw
- Herbert A. Simon
- Oliver Selfridge
- Frank Rosenblatt
- Bernard Widrow
- Joseph Weizenbaum
- Seymour Papert
- Seppo Linnainmaa
- Paul Werbos
- Jürgen Schmidhuber
- Yann LeCun
- Geoffrey Hinton
- John Hopfield
- Yoshua Bengio
- Lotfi A. Zadeh
- Stephen Grossberg
- Alex Graves
- Andrew Ng
- Fei-Fei Li
- Alex Krizhevsky
- Ilya Sutskever
- Demis Hassabis
- David Silver
- Ian Goodfellow
- Andrej Karpathy
Architectures
Retrieved from "https://en.wikipedia.org/w/index.php?title=IBM_Granite&oldid=1261049551"
- IBM products
- IBM software
- Large language models
- Generative artificial intelligence
- Artificial neural networks
- 2023 software
- Free software
Hidden categories:
-
This page was last edited on 3 December 2024, at 23:41 (UTC).
-
Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.
(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.eqiad.main-d948c7fb8-cxswk","wgBackendResponseTime":182,"wgPageParseReport":{"limitreport":{"cputime":"0.551","walltime":"0.816","ppvisitednodes":{"value":2055,"limit":1000000},"postexpandincludesize":{"value":135341,"limit":2097152},"templateargumentsize":{"value":3359,"limit":2097152},"expansiondepth":{"value":19,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":79803,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 651.077 1 -total"," 28.30% 184.228 1 Template:Infobox_software"," 27.38% 178.272 1 Template:Infobox"," 25.70% 167.354 1 Template:Reflist"," 22.12% 144.027 1 Template:Machine_learning"," 20.56% 133.835 13 Template:Cite_web"," 16.40% 106.751 1 Template:Sidebar_with_collapsible_lists"," 11.66% 75.891 1 Template:Short_description"," 11.29% 73.502 6 Template:Navbox"," 9.23% 60.104 1 Template:IBM"]},"scribunto":{"limitreport-timeusage":{"value":"0.311","limit":"10.000"},"limitreport-memusage":{"value":6292074,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-564445c997-njrwj","timestamp":"20241203234155","ttl":2592000,"transientcontent":false}}});}); {"@context":"https:\/\/schema.org","@type":"Article","name":"IBM Granite","url":"https:\/\/en.wikipedia.org\/wiki\/IBM_Granite","sameAs":"http:\/\/www.wikidata.org\/entity\/Q124693286","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q124693286","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2024-02-14T10:53:03Z","dateModified":"2024-12-03T23:41:50Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/b\/bd\/IBM_granite_2_cubes_logo.svg","headline":"2023 text-generating language model"}